|
|
|
import math |
|
import warnings |
|
|
|
import torch |
|
from torch import Tensor |
|
from torch.nn.parameter import Parameter, UninitializedParameter |
|
from .. import functional as F |
|
from .. import init |
|
from .lazy import LazyModuleMixin |
|
from .module import Module |
|
from .utils import _single, _pair, _triple, _reverse_repeat_tuple |
|
from torch._torch_docs import reproducibility_notes |
|
|
|
from ..common_types import _size_1_t, _size_2_t, _size_3_t |
|
from typing import Optional, List, Tuple, Union |
|
|
|
__all__ = ['Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d', |
|
'LazyConv1d', 'LazyConv2d', 'LazyConv3d', 'LazyConvTranspose1d', 'LazyConvTranspose2d', |
|
'LazyConvTranspose3d'] |
|
|
|
convolution_notes = \ |
|
{"groups_note": r"""* :attr:`groups` controls the connections between inputs and outputs. |
|
:attr:`in_channels` and :attr:`out_channels` must both be divisible by |
|
:attr:`groups`. For example, |
|
|
|
* At groups=1, all inputs are convolved to all outputs. |
|
* At groups=2, the operation becomes equivalent to having two conv |
|
layers side by side, each seeing half the input channels |
|
and producing half the output channels, and both subsequently |
|
concatenated. |
|
* At groups= :attr:`in_channels`, each input channel is convolved with |
|
its own set of filters (of size |
|
:math:`\frac{\text{out\_channels}}{\text{in\_channels}}`).""", |
|
|
|
"depthwise_separable_note": r"""When `groups == in_channels` and `out_channels == K * in_channels`, |
|
where `K` is a positive integer, this operation is also known as a "depthwise convolution". |
|
|
|
In other words, for an input of size :math:`(N, C_{in}, L_{in})`, |
|
a depthwise convolution with a depthwise multiplier `K` can be performed with the arguments |
|
:math:`(C_\text{in}=C_\text{in}, C_\text{out}=C_\text{in} \times \text{K}, ..., \text{groups}=C_\text{in})`."""} |
|
|
|
|
|
|
|
|
|
|
|
class _ConvNd(Module): |
|
|
|
__constants__ = ['stride', 'padding', 'dilation', 'groups', |
|
'padding_mode', 'output_padding', 'in_channels', |
|
'out_channels', 'kernel_size'] |
|
__annotations__ = {'bias': Optional[torch.Tensor]} |
|
|
|
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: |
|
... |
|
|
|
in_channels: int |
|
_reversed_padding_repeated_twice: List[int] |
|
out_channels: int |
|
kernel_size: Tuple[int, ...] |
|
stride: Tuple[int, ...] |
|
padding: Union[str, Tuple[int, ...]] |
|
dilation: Tuple[int, ...] |
|
transposed: bool |
|
output_padding: Tuple[int, ...] |
|
groups: int |
|
padding_mode: str |
|
weight: Tensor |
|
bias: Optional[Tensor] |
|
|
|
def __init__(self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: Tuple[int, ...], |
|
stride: Tuple[int, ...], |
|
padding: Tuple[int, ...], |
|
dilation: Tuple[int, ...], |
|
transposed: bool, |
|
output_padding: Tuple[int, ...], |
|
groups: int, |
|
bias: bool, |
|
padding_mode: str, |
|
device=None, |
|
dtype=None) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super(_ConvNd, self).__init__() |
|
if groups <= 0: |
|
raise ValueError('groups must be a positive integer') |
|
if in_channels % groups != 0: |
|
raise ValueError('in_channels must be divisible by groups') |
|
if out_channels % groups != 0: |
|
raise ValueError('out_channels must be divisible by groups') |
|
valid_padding_strings = {'same', 'valid'} |
|
if isinstance(padding, str): |
|
if padding not in valid_padding_strings: |
|
raise ValueError( |
|
"Invalid padding string {!r}, should be one of {}".format( |
|
padding, valid_padding_strings)) |
|
if padding == 'same' and any(s != 1 for s in stride): |
|
raise ValueError("padding='same' is not supported for strided convolutions") |
|
|
|
valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'} |
|
if padding_mode not in valid_padding_modes: |
|
raise ValueError("padding_mode must be one of {}, but got padding_mode='{}'".format( |
|
valid_padding_modes, padding_mode)) |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.padding = padding |
|
self.dilation = dilation |
|
self.transposed = transposed |
|
self.output_padding = output_padding |
|
self.groups = groups |
|
self.padding_mode = padding_mode |
|
|
|
|
|
|
|
|
|
if isinstance(self.padding, str): |
|
self._reversed_padding_repeated_twice = [0, 0] * len(kernel_size) |
|
if padding == 'same': |
|
for d, k, i in zip(dilation, kernel_size, |
|
range(len(kernel_size) - 1, -1, -1)): |
|
total_padding = d * (k - 1) |
|
left_pad = total_padding // 2 |
|
self._reversed_padding_repeated_twice[2 * i] = left_pad |
|
self._reversed_padding_repeated_twice[2 * i + 1] = ( |
|
total_padding - left_pad) |
|
else: |
|
self._reversed_padding_repeated_twice = _reverse_repeat_tuple(self.padding, 2) |
|
|
|
if transposed: |
|
self.weight = Parameter(torch.empty( |
|
(in_channels, out_channels // groups, *kernel_size), **factory_kwargs)) |
|
else: |
|
self.weight = Parameter(torch.empty( |
|
(out_channels, in_channels // groups, *kernel_size), **factory_kwargs)) |
|
if bias: |
|
self.bias = Parameter(torch.empty(out_channels, **factory_kwargs)) |
|
else: |
|
self.register_parameter('bias', None) |
|
|
|
self.reset_parameters() |
|
|
|
def reset_parameters(self) -> None: |
|
|
|
|
|
|
|
init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
if self.bias is not None: |
|
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) |
|
if fan_in != 0: |
|
bound = 1 / math.sqrt(fan_in) |
|
init.uniform_(self.bias, -bound, bound) |
|
|
|
def extra_repr(self): |
|
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}' |
|
', stride={stride}') |
|
if self.padding != (0,) * len(self.padding): |
|
s += ', padding={padding}' |
|
if self.dilation != (1,) * len(self.dilation): |
|
s += ', dilation={dilation}' |
|
if self.output_padding != (0,) * len(self.output_padding): |
|
s += ', output_padding={output_padding}' |
|
if self.groups != 1: |
|
s += ', groups={groups}' |
|
if self.bias is None: |
|
s += ', bias=False' |
|
if self.padding_mode != 'zeros': |
|
s += ', padding_mode={padding_mode}' |
|
return s.format(**self.__dict__) |
|
|
|
def __setstate__(self, state): |
|
super(_ConvNd, self).__setstate__(state) |
|
if not hasattr(self, 'padding_mode'): |
|
self.padding_mode = 'zeros' |
|
|
|
|
|
class Conv1d(_ConvNd): |
|
__doc__ = r"""Applies a 1D convolution over an input signal composed of several input |
|
planes. |
|
|
|
In the simplest case, the output value of the layer with input size |
|
:math:`(N, C_{\text{in}}, L)` and output :math:`(N, C_{\text{out}}, L_{\text{out}})` can be |
|
precisely described as: |
|
|
|
.. math:: |
|
\text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) + |
|
\sum_{k = 0}^{C_{in} - 1} \text{weight}(C_{\text{out}_j}, k) |
|
\star \text{input}(N_i, k) |
|
|
|
where :math:`\star` is the valid `cross-correlation`_ operator, |
|
:math:`N` is a batch size, :math:`C` denotes a number of channels, |
|
:math:`L` is a length of signal sequence. |
|
""" + r""" |
|
|
|
This module supports :ref:`TensorFloat32<tf32_on_ampere>`. |
|
|
|
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward. |
|
|
|
* :attr:`stride` controls the stride for the cross-correlation, a single |
|
number or a one-element tuple. |
|
|
|
* :attr:`padding` controls the amount of padding applied to the input. It |
|
can be either a string {{'valid', 'same'}} or a tuple of ints giving the |
|
amount of implicit padding applied on both sides. |
|
|
|
* :attr:`dilation` controls the spacing between the kernel points; also |
|
known as the à trous algorithm. It is harder to describe, but this `link`_ |
|
has a nice visualization of what :attr:`dilation` does. |
|
|
|
{groups_note} |
|
|
|
Note: |
|
{depthwise_separable_note} |
|
Note: |
|
{cudnn_reproducibility_note} |
|
|
|
Note: |
|
``padding='valid'`` is the same as no padding. ``padding='same'`` pads |
|
the input so the output has the shape as the input. However, this mode |
|
doesn't support any stride values other than 1. |
|
|
|
Note: |
|
This module supports complex data types i.e. ``complex32, complex64, complex128``. |
|
|
|
Args: |
|
in_channels (int): Number of channels in the input image |
|
out_channels (int): Number of channels produced by the convolution |
|
kernel_size (int or tuple): Size of the convolving kernel |
|
stride (int or tuple, optional): Stride of the convolution. Default: 1 |
|
padding (int, tuple or str, optional): Padding added to both sides of |
|
the input. Default: 0 |
|
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, |
|
``'replicate'`` or ``'circular'``. Default: ``'zeros'`` |
|
dilation (int or tuple, optional): Spacing between kernel |
|
elements. Default: 1 |
|
groups (int, optional): Number of blocked connections from input |
|
channels to output channels. Default: 1 |
|
bias (bool, optional): If ``True``, adds a learnable bias to the |
|
output. Default: ``True`` |
|
|
|
""".format(**reproducibility_notes, **convolution_notes) + r""" |
|
|
|
Shape: |
|
- Input: :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})` |
|
- Output: :math:`(N, C_{out}, L_{out})` or :math:`(C_{out}, L_{out})`, where |
|
|
|
.. math:: |
|
L_{out} = \left\lfloor\frac{L_{in} + 2 \times \text{padding} - \text{dilation} |
|
\times (\text{kernel\_size} - 1) - 1}{\text{stride}} + 1\right\rfloor |
|
|
|
Attributes: |
|
weight (Tensor): the learnable weights of the module of shape |
|
:math:`(\text{out\_channels}, |
|
\frac{\text{in\_channels}}{\text{groups}}, \text{kernel\_size})`. |
|
The values of these weights are sampled from |
|
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where |
|
:math:`k = \frac{groups}{C_\text{in} * \text{kernel\_size}}` |
|
bias (Tensor): the learnable bias of the module of shape |
|
(out_channels). If :attr:`bias` is ``True``, then the values of these weights are |
|
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where |
|
:math:`k = \frac{groups}{C_\text{in} * \text{kernel\_size}}` |
|
|
|
Examples:: |
|
|
|
>>> m = nn.Conv1d(16, 33, 3, stride=2) |
|
>>> input = torch.randn(20, 16, 50) |
|
>>> output = m(input) |
|
|
|
.. _cross-correlation: |
|
https://en.wikipedia.org/wiki/Cross-correlation |
|
|
|
.. _link: |
|
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: _size_1_t, |
|
stride: _size_1_t = 1, |
|
padding: Union[str, _size_1_t] = 0, |
|
dilation: _size_1_t = 1, |
|
groups: int = 1, |
|
bias: bool = True, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
|
|
|
|
kernel_size_ = _single(kernel_size) |
|
stride_ = _single(stride) |
|
padding_ = padding if isinstance(padding, str) else _single(padding) |
|
dilation_ = _single(dilation) |
|
super(Conv1d, self).__init__( |
|
in_channels, out_channels, kernel_size_, stride_, padding_, dilation_, |
|
False, _single(0), groups, bias, padding_mode, **factory_kwargs) |
|
|
|
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]): |
|
if self.padding_mode != 'zeros': |
|
return F.conv1d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), |
|
weight, bias, self.stride, |
|
_single(0), self.dilation, self.groups) |
|
return F.conv1d(input, weight, bias, self.stride, |
|
self.padding, self.dilation, self.groups) |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
return self._conv_forward(input, self.weight, self.bias) |
|
|
|
|
|
class Conv2d(_ConvNd): |
|
__doc__ = r"""Applies a 2D convolution over an input signal composed of several input |
|
planes. |
|
|
|
In the simplest case, the output value of the layer with input size |
|
:math:`(N, C_{\text{in}}, H, W)` and output :math:`(N, C_{\text{out}}, H_{\text{out}}, W_{\text{out}})` |
|
can be precisely described as: |
|
|
|
.. math:: |
|
\text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) + |
|
\sum_{k = 0}^{C_{\text{in}} - 1} \text{weight}(C_{\text{out}_j}, k) \star \text{input}(N_i, k) |
|
|
|
|
|
where :math:`\star` is the valid 2D `cross-correlation`_ operator, |
|
:math:`N` is a batch size, :math:`C` denotes a number of channels, |
|
:math:`H` is a height of input planes in pixels, and :math:`W` is |
|
width in pixels. |
|
""" + r""" |
|
|
|
This module supports :ref:`TensorFloat32<tf32_on_ampere>`. |
|
|
|
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward. |
|
|
|
* :attr:`stride` controls the stride for the cross-correlation, a single |
|
number or a tuple. |
|
|
|
* :attr:`padding` controls the amount of padding applied to the input. It |
|
can be either a string {{'valid', 'same'}} or a tuple of ints giving the |
|
amount of implicit padding applied on both sides. |
|
|
|
* :attr:`dilation` controls the spacing between the kernel points; also |
|
known as the à trous algorithm. It is harder to describe, but this `link`_ |
|
has a nice visualization of what :attr:`dilation` does. |
|
|
|
{groups_note} |
|
|
|
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be: |
|
|
|
- a single ``int`` -- in which case the same value is used for the height and width dimension |
|
- a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension, |
|
and the second `int` for the width dimension |
|
|
|
Note: |
|
{depthwise_separable_note} |
|
|
|
Note: |
|
{cudnn_reproducibility_note} |
|
|
|
Note: |
|
``padding='valid'`` is the same as no padding. ``padding='same'`` pads |
|
the input so the output has the shape as the input. However, this mode |
|
doesn't support any stride values other than 1. |
|
|
|
Note: |
|
This module supports complex data types i.e. ``complex32, complex64, complex128``. |
|
|
|
Args: |
|
in_channels (int): Number of channels in the input image |
|
out_channels (int): Number of channels produced by the convolution |
|
kernel_size (int or tuple): Size of the convolving kernel |
|
stride (int or tuple, optional): Stride of the convolution. Default: 1 |
|
padding (int, tuple or str, optional): Padding added to all four sides of |
|
the input. Default: 0 |
|
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, |
|
``'replicate'`` or ``'circular'``. Default: ``'zeros'`` |
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 |
|
groups (int, optional): Number of blocked connections from input |
|
channels to output channels. Default: 1 |
|
bias (bool, optional): If ``True``, adds a learnable bias to the |
|
output. Default: ``True`` |
|
""".format(**reproducibility_notes, **convolution_notes) + r""" |
|
|
|
Shape: |
|
- Input: :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})` |
|
- Output: :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`, where |
|
|
|
.. math:: |
|
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] |
|
\times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor |
|
|
|
.. math:: |
|
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] |
|
\times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor |
|
|
|
Attributes: |
|
weight (Tensor): the learnable weights of the module of shape |
|
:math:`(\text{out\_channels}, \frac{\text{in\_channels}}{\text{groups}},` |
|
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]})`. |
|
The values of these weights are sampled from |
|
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where |
|
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]}` |
|
bias (Tensor): the learnable bias of the module of shape |
|
(out_channels). If :attr:`bias` is ``True``, |
|
then the values of these weights are |
|
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where |
|
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]}` |
|
|
|
Examples: |
|
|
|
>>> # With square kernels and equal stride |
|
>>> m = nn.Conv2d(16, 33, 3, stride=2) |
|
>>> # non-square kernels and unequal stride and with padding |
|
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) |
|
>>> # non-square kernels and unequal stride and with padding and dilation |
|
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) |
|
>>> input = torch.randn(20, 16, 50, 100) |
|
>>> output = m(input) |
|
|
|
.. _cross-correlation: |
|
https://en.wikipedia.org/wiki/Cross-correlation |
|
|
|
.. _link: |
|
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: _size_2_t, |
|
stride: _size_2_t = 1, |
|
padding: Union[str, _size_2_t] = 0, |
|
dilation: _size_2_t = 1, |
|
groups: int = 1, |
|
bias: bool = True, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
kernel_size_ = _pair(kernel_size) |
|
stride_ = _pair(stride) |
|
padding_ = padding if isinstance(padding, str) else _pair(padding) |
|
dilation_ = _pair(dilation) |
|
super(Conv2d, self).__init__( |
|
in_channels, out_channels, kernel_size_, stride_, padding_, dilation_, |
|
False, _pair(0), groups, bias, padding_mode, **factory_kwargs) |
|
|
|
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]): |
|
if self.padding_mode != 'zeros': |
|
return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), |
|
weight, bias, self.stride, |
|
_pair(0), self.dilation, self.groups) |
|
return F.conv2d(input, weight, bias, self.stride, |
|
self.padding, self.dilation, self.groups) |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
return self._conv_forward(input, self.weight, self.bias) |
|
|
|
class Conv3d(_ConvNd): |
|
__doc__ = r"""Applies a 3D convolution over an input signal composed of several input |
|
planes. |
|
|
|
In the simplest case, the output value of the layer with input size :math:`(N, C_{in}, D, H, W)` |
|
and output :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` can be precisely described as: |
|
|
|
.. math:: |
|
out(N_i, C_{out_j}) = bias(C_{out_j}) + |
|
\sum_{k = 0}^{C_{in} - 1} weight(C_{out_j}, k) \star input(N_i, k) |
|
|
|
where :math:`\star` is the valid 3D `cross-correlation`_ operator |
|
""" + r""" |
|
|
|
This module supports :ref:`TensorFloat32<tf32_on_ampere>`. |
|
|
|
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward. |
|
|
|
* :attr:`stride` controls the stride for the cross-correlation. |
|
|
|
* :attr:`padding` controls the amount of padding applied to the input. It |
|
can be either a string {{'valid', 'same'}} or a tuple of ints giving the |
|
amount of implicit padding applied on both sides. |
|
|
|
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. |
|
It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does. |
|
|
|
{groups_note} |
|
|
|
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be: |
|
|
|
- a single ``int`` -- in which case the same value is used for the depth, height and width dimension |
|
- a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension, |
|
the second `int` for the height dimension and the third `int` for the width dimension |
|
|
|
Note: |
|
{depthwise_separable_note} |
|
|
|
Note: |
|
{cudnn_reproducibility_note} |
|
|
|
Note: |
|
``padding='valid'`` is the same as no padding. ``padding='same'`` pads |
|
the input so the output has the shape as the input. However, this mode |
|
doesn't support any stride values other than 1. |
|
|
|
Note: |
|
This module supports complex data types i.e. ``complex32, complex64, complex128``. |
|
|
|
Args: |
|
in_channels (int): Number of channels in the input image |
|
out_channels (int): Number of channels produced by the convolution |
|
kernel_size (int or tuple): Size of the convolving kernel |
|
stride (int or tuple, optional): Stride of the convolution. Default: 1 |
|
padding (int, tuple or str, optional): Padding added to all six sides of |
|
the input. Default: 0 |
|
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'`` |
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 |
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 |
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` |
|
""".format(**reproducibility_notes, **convolution_notes) + r""" |
|
|
|
Shape: |
|
- Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` or :math:`(C_{in}, D_{in}, H_{in}, W_{in})` |
|
- Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` or :math:`(C_{out}, D_{out}, H_{out}, W_{out})`, |
|
where |
|
|
|
.. math:: |
|
D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] |
|
\times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor |
|
|
|
.. math:: |
|
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] |
|
\times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor |
|
|
|
.. math:: |
|
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2] |
|
\times (\text{kernel\_size}[2] - 1) - 1}{\text{stride}[2]} + 1\right\rfloor |
|
|
|
Attributes: |
|
weight (Tensor): the learnable weights of the module of shape |
|
:math:`(\text{out\_channels}, \frac{\text{in\_channels}}{\text{groups}},` |
|
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]}, \text{kernel\_size[2]})`. |
|
The values of these weights are sampled from |
|
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where |
|
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{2}\text{kernel\_size}[i]}` |
|
bias (Tensor): the learnable bias of the module of shape (out_channels). If :attr:`bias` is ``True``, |
|
then the values of these weights are |
|
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where |
|
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{2}\text{kernel\_size}[i]}` |
|
|
|
Examples:: |
|
|
|
>>> # With square kernels and equal stride |
|
>>> m = nn.Conv3d(16, 33, 3, stride=2) |
|
>>> # non-square kernels and unequal stride and with padding |
|
>>> m = nn.Conv3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0)) |
|
>>> input = torch.randn(20, 16, 10, 50, 100) |
|
>>> output = m(input) |
|
|
|
.. _cross-correlation: |
|
https://en.wikipedia.org/wiki/Cross-correlation |
|
|
|
.. _link: |
|
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: _size_3_t, |
|
stride: _size_3_t = 1, |
|
padding: Union[str, _size_3_t] = 0, |
|
dilation: _size_3_t = 1, |
|
groups: int = 1, |
|
bias: bool = True, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
kernel_size_ = _triple(kernel_size) |
|
stride_ = _triple(stride) |
|
padding_ = padding if isinstance(padding, str) else _triple(padding) |
|
dilation_ = _triple(dilation) |
|
super(Conv3d, self).__init__( |
|
in_channels, out_channels, kernel_size_, stride_, padding_, dilation_, |
|
False, _triple(0), groups, bias, padding_mode, **factory_kwargs) |
|
|
|
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]): |
|
if self.padding_mode != "zeros": |
|
return F.conv3d( |
|
F.pad( |
|
input, self._reversed_padding_repeated_twice, mode=self.padding_mode |
|
), |
|
weight, |
|
bias, |
|
self.stride, |
|
_triple(0), |
|
self.dilation, |
|
self.groups, |
|
) |
|
return F.conv3d( |
|
input, weight, bias, self.stride, self.padding, self.dilation, self.groups |
|
) |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
return self._conv_forward(input, self.weight, self.bias) |
|
|
|
|
|
|
|
class _ConvTransposeNd(_ConvNd): |
|
def __init__(self, in_channels, out_channels, kernel_size, stride, |
|
padding, dilation, transposed, output_padding, |
|
groups, bias, padding_mode, device=None, dtype=None) -> None: |
|
if padding_mode != 'zeros': |
|
raise ValueError('Only "zeros" padding mode is supported for {}'.format(self.__class__.__name__)) |
|
|
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super(_ConvTransposeNd, self).__init__( |
|
in_channels, out_channels, kernel_size, stride, |
|
padding, dilation, transposed, output_padding, |
|
groups, bias, padding_mode, **factory_kwargs) |
|
|
|
|
|
|
|
def _output_padding(self, input: Tensor, output_size: Optional[List[int]], |
|
stride: List[int], padding: List[int], kernel_size: List[int], |
|
num_spatial_dims: int, dilation: Optional[List[int]] = None) -> List[int]: |
|
if output_size is None: |
|
ret = _single(self.output_padding) |
|
else: |
|
has_batch_dim = input.dim() == num_spatial_dims + 2 |
|
num_non_spatial_dims = 2 if has_batch_dim else 1 |
|
if len(output_size) == num_non_spatial_dims + num_spatial_dims: |
|
output_size = output_size[num_non_spatial_dims:] |
|
if len(output_size) != num_spatial_dims: |
|
raise ValueError( |
|
"ConvTranspose{}D: for {}D input, output_size must have {} or {} elements (got {})" |
|
.format(num_spatial_dims, input.dim(), num_spatial_dims, |
|
num_non_spatial_dims + num_spatial_dims, len(output_size))) |
|
|
|
min_sizes = torch.jit.annotate(List[int], []) |
|
max_sizes = torch.jit.annotate(List[int], []) |
|
for d in range(num_spatial_dims): |
|
dim_size = ((input.size(d + num_non_spatial_dims) - 1) * stride[d] - |
|
2 * padding[d] + |
|
(dilation[d] if dilation is not None else 1) * (kernel_size[d] - 1) + 1) |
|
min_sizes.append(dim_size) |
|
max_sizes.append(min_sizes[d] + stride[d] - 1) |
|
|
|
for i in range(len(output_size)): |
|
size = output_size[i] |
|
min_size = min_sizes[i] |
|
max_size = max_sizes[i] |
|
if size < min_size or size > max_size: |
|
raise ValueError(( |
|
"requested an output size of {}, but valid sizes range " |
|
"from {} to {} (for an input of {})").format( |
|
output_size, min_sizes, max_sizes, input.size()[2:])) |
|
|
|
res = torch.jit.annotate(List[int], []) |
|
for d in range(num_spatial_dims): |
|
res.append(output_size[d] - min_sizes[d]) |
|
|
|
ret = res |
|
return ret |
|
|
|
|
|
class ConvTranspose1d(_ConvTransposeNd): |
|
__doc__ = r"""Applies a 1D transposed convolution operator over an input image |
|
composed of several input planes. |
|
|
|
This module can be seen as the gradient of Conv1d with respect to its input. |
|
It is also known as a fractionally-strided convolution or |
|
a deconvolution (although it is not an actual deconvolution operation as it does |
|
not compute a true inverse of convolution). For more information, see the visualizations |
|
`here`_ and the `Deconvolutional Networks`_ paper. |
|
|
|
This module supports :ref:`TensorFloat32<tf32_on_ampere>`. |
|
|
|
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward. |
|
|
|
* :attr:`stride` controls the stride for the cross-correlation. |
|
|
|
* :attr:`padding` controls the amount of implicit zero padding on both |
|
sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note |
|
below for details. |
|
|
|
* :attr:`output_padding` controls the additional size added to one side |
|
of the output shape. See note below for details. |
|
|
|
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. |
|
It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does. |
|
|
|
{groups_note} |
|
|
|
Note: |
|
The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding`` |
|
amount of zero padding to both sizes of the input. This is set so that |
|
when a :class:`~torch.nn.Conv1d` and a :class:`~torch.nn.ConvTranspose1d` |
|
are initialized with same parameters, they are inverses of each other in |
|
regard to the input and output shapes. However, when ``stride > 1``, |
|
:class:`~torch.nn.Conv1d` maps multiple input shapes to the same output |
|
shape. :attr:`output_padding` is provided to resolve this ambiguity by |
|
effectively increasing the calculated output shape on one side. Note |
|
that :attr:`output_padding` is only used to find output shape, but does |
|
not actually add zero-padding to output. |
|
|
|
Note: |
|
In some circumstances when using the CUDA backend with CuDNN, this operator |
|
may select a nondeterministic algorithm to increase performance. If this is |
|
undesirable, you can try to make the operation deterministic (potentially at |
|
a performance cost) by setting ``torch.backends.cudnn.deterministic = |
|
True``. |
|
Please see the notes on :doc:`/notes/randomness` for background. |
|
|
|
|
|
Args: |
|
in_channels (int): Number of channels in the input image |
|
out_channels (int): Number of channels produced by the convolution |
|
kernel_size (int or tuple): Size of the convolving kernel |
|
stride (int or tuple, optional): Stride of the convolution. Default: 1 |
|
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding |
|
will be added to both sides of the input. Default: 0 |
|
output_padding (int or tuple, optional): Additional size added to one side |
|
of the output shape. Default: 0 |
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 |
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` |
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 |
|
""".format(**reproducibility_notes, **convolution_notes) + r""" |
|
|
|
Shape: |
|
- Input: :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})` |
|
- Output: :math:`(N, C_{out}, L_{out})` or :math:`(C_{out}, L_{out})`, where |
|
|
|
.. math:: |
|
L_{out} = (L_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} |
|
\times (\text{kernel\_size} - 1) + \text{output\_padding} + 1 |
|
|
|
Attributes: |
|
weight (Tensor): the learnable weights of the module of shape |
|
:math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},` |
|
:math:`\text{kernel\_size})`. |
|
The values of these weights are sampled from |
|
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where |
|
:math:`k = \frac{groups}{C_\text{out} * \text{kernel\_size}}` |
|
bias (Tensor): the learnable bias of the module of shape (out_channels). |
|
If :attr:`bias` is ``True``, then the values of these weights are |
|
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where |
|
:math:`k = \frac{groups}{C_\text{out} * \text{kernel\_size}}` |
|
|
|
.. _`here`: |
|
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md |
|
|
|
.. _`Deconvolutional Networks`: |
|
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: _size_1_t, |
|
stride: _size_1_t = 1, |
|
padding: _size_1_t = 0, |
|
output_padding: _size_1_t = 0, |
|
groups: int = 1, |
|
bias: bool = True, |
|
dilation: _size_1_t = 1, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
kernel_size = _single(kernel_size) |
|
stride = _single(stride) |
|
padding = _single(padding) |
|
dilation = _single(dilation) |
|
output_padding = _single(output_padding) |
|
super(ConvTranspose1d, self).__init__( |
|
in_channels, out_channels, kernel_size, stride, padding, dilation, |
|
True, output_padding, groups, bias, padding_mode, **factory_kwargs) |
|
|
|
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor: |
|
if self.padding_mode != 'zeros': |
|
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose1d') |
|
|
|
assert isinstance(self.padding, tuple) |
|
|
|
|
|
num_spatial_dims = 1 |
|
output_padding = self._output_padding( |
|
input, output_size, self.stride, self.padding, self.kernel_size, |
|
num_spatial_dims, self.dilation) |
|
return F.conv_transpose1d( |
|
input, self.weight, self.bias, self.stride, self.padding, |
|
output_padding, self.groups, self.dilation) |
|
|
|
|
|
class ConvTranspose2d(_ConvTransposeNd): |
|
__doc__ = r"""Applies a 2D transposed convolution operator over an input image |
|
composed of several input planes. |
|
|
|
This module can be seen as the gradient of Conv2d with respect to its input. |
|
It is also known as a fractionally-strided convolution or |
|
a deconvolution (although it is not an actual deconvolution operation as it does |
|
not compute a true inverse of convolution). For more information, see the visualizations |
|
`here`_ and the `Deconvolutional Networks`_ paper. |
|
|
|
This module supports :ref:`TensorFloat32<tf32_on_ampere>`. |
|
|
|
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward. |
|
|
|
* :attr:`stride` controls the stride for the cross-correlation. |
|
|
|
* :attr:`padding` controls the amount of implicit zero padding on both |
|
sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note |
|
below for details. |
|
|
|
* :attr:`output_padding` controls the additional size added to one side |
|
of the output shape. See note below for details. |
|
|
|
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. |
|
It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does. |
|
|
|
{groups_note} |
|
|
|
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding` |
|
can either be: |
|
|
|
- a single ``int`` -- in which case the same value is used for the height and width dimensions |
|
- a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension, |
|
and the second `int` for the width dimension |
|
|
|
Note: |
|
The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding`` |
|
amount of zero padding to both sizes of the input. This is set so that |
|
when a :class:`~torch.nn.Conv2d` and a :class:`~torch.nn.ConvTranspose2d` |
|
are initialized with same parameters, they are inverses of each other in |
|
regard to the input and output shapes. However, when ``stride > 1``, |
|
:class:`~torch.nn.Conv2d` maps multiple input shapes to the same output |
|
shape. :attr:`output_padding` is provided to resolve this ambiguity by |
|
effectively increasing the calculated output shape on one side. Note |
|
that :attr:`output_padding` is only used to find output shape, but does |
|
not actually add zero-padding to output. |
|
|
|
Note: |
|
{cudnn_reproducibility_note} |
|
|
|
Args: |
|
in_channels (int): Number of channels in the input image |
|
out_channels (int): Number of channels produced by the convolution |
|
kernel_size (int or tuple): Size of the convolving kernel |
|
stride (int or tuple, optional): Stride of the convolution. Default: 1 |
|
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding |
|
will be added to both sides of each dimension in the input. Default: 0 |
|
output_padding (int or tuple, optional): Additional size added to one side |
|
of each dimension in the output shape. Default: 0 |
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 |
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` |
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 |
|
""".format(**reproducibility_notes, **convolution_notes) + r""" |
|
|
|
Shape: |
|
- Input: :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})` |
|
- Output: :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`, where |
|
|
|
.. math:: |
|
H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0] |
|
\times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1 |
|
.. math:: |
|
W_{out} = (W_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1] |
|
\times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1 |
|
|
|
Attributes: |
|
weight (Tensor): the learnable weights of the module of shape |
|
:math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},` |
|
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]})`. |
|
The values of these weights are sampled from |
|
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where |
|
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}` |
|
bias (Tensor): the learnable bias of the module of shape (out_channels) |
|
If :attr:`bias` is ``True``, then the values of these weights are |
|
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where |
|
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}` |
|
|
|
Examples:: |
|
|
|
>>> # With square kernels and equal stride |
|
>>> m = nn.ConvTranspose2d(16, 33, 3, stride=2) |
|
>>> # non-square kernels and unequal stride and with padding |
|
>>> m = nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) |
|
>>> input = torch.randn(20, 16, 50, 100) |
|
>>> output = m(input) |
|
>>> # exact output size can be also specified as an argument |
|
>>> input = torch.randn(1, 16, 12, 12) |
|
>>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1) |
|
>>> upsample = nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1) |
|
>>> h = downsample(input) |
|
>>> h.size() |
|
torch.Size([1, 16, 6, 6]) |
|
>>> output = upsample(h, output_size=input.size()) |
|
>>> output.size() |
|
torch.Size([1, 16, 12, 12]) |
|
|
|
.. _`here`: |
|
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md |
|
|
|
.. _`Deconvolutional Networks`: |
|
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: _size_2_t, |
|
stride: _size_2_t = 1, |
|
padding: _size_2_t = 0, |
|
output_padding: _size_2_t = 0, |
|
groups: int = 1, |
|
bias: bool = True, |
|
dilation: _size_2_t = 1, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
kernel_size = _pair(kernel_size) |
|
stride = _pair(stride) |
|
padding = _pair(padding) |
|
dilation = _pair(dilation) |
|
output_padding = _pair(output_padding) |
|
super(ConvTranspose2d, self).__init__( |
|
in_channels, out_channels, kernel_size, stride, padding, dilation, |
|
True, output_padding, groups, bias, padding_mode, **factory_kwargs) |
|
|
|
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor: |
|
if self.padding_mode != 'zeros': |
|
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose2d') |
|
|
|
assert isinstance(self.padding, tuple) |
|
|
|
|
|
num_spatial_dims = 2 |
|
output_padding = self._output_padding( |
|
input, output_size, self.stride, self.padding, self.kernel_size, |
|
num_spatial_dims, self.dilation) |
|
|
|
return F.conv_transpose2d( |
|
input, self.weight, self.bias, self.stride, self.padding, |
|
output_padding, self.groups, self.dilation) |
|
|
|
|
|
class ConvTranspose3d(_ConvTransposeNd): |
|
__doc__ = r"""Applies a 3D transposed convolution operator over an input image composed of several input |
|
planes. |
|
The transposed convolution operator multiplies each input value element-wise by a learnable kernel, |
|
and sums over the outputs from all input feature planes. |
|
|
|
This module can be seen as the gradient of Conv3d with respect to its input. |
|
It is also known as a fractionally-strided convolution or |
|
a deconvolution (although it is not an actual deconvolution operation as it does |
|
not compute a true inverse of convolution). For more information, see the visualizations |
|
`here`_ and the `Deconvolutional Networks`_ paper. |
|
|
|
This module supports :ref:`TensorFloat32<tf32_on_ampere>`. |
|
|
|
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward. |
|
|
|
* :attr:`stride` controls the stride for the cross-correlation. |
|
|
|
* :attr:`padding` controls the amount of implicit zero padding on both |
|
sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note |
|
below for details. |
|
|
|
* :attr:`output_padding` controls the additional size added to one side |
|
of the output shape. See note below for details. |
|
|
|
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. |
|
It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does. |
|
|
|
{groups_note} |
|
|
|
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding` |
|
can either be: |
|
|
|
- a single ``int`` -- in which case the same value is used for the depth, height and width dimensions |
|
- a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension, |
|
the second `int` for the height dimension and the third `int` for the width dimension |
|
|
|
Note: |
|
The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding`` |
|
amount of zero padding to both sizes of the input. This is set so that |
|
when a :class:`~torch.nn.Conv3d` and a :class:`~torch.nn.ConvTranspose3d` |
|
are initialized with same parameters, they are inverses of each other in |
|
regard to the input and output shapes. However, when ``stride > 1``, |
|
:class:`~torch.nn.Conv3d` maps multiple input shapes to the same output |
|
shape. :attr:`output_padding` is provided to resolve this ambiguity by |
|
effectively increasing the calculated output shape on one side. Note |
|
that :attr:`output_padding` is only used to find output shape, but does |
|
not actually add zero-padding to output. |
|
|
|
Note: |
|
{cudnn_reproducibility_note} |
|
|
|
Args: |
|
in_channels (int): Number of channels in the input image |
|
out_channels (int): Number of channels produced by the convolution |
|
kernel_size (int or tuple): Size of the convolving kernel |
|
stride (int or tuple, optional): Stride of the convolution. Default: 1 |
|
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding |
|
will be added to both sides of each dimension in the input. Default: 0 |
|
output_padding (int or tuple, optional): Additional size added to one side |
|
of each dimension in the output shape. Default: 0 |
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 |
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` |
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 |
|
""".format(**reproducibility_notes, **convolution_notes) + r""" |
|
|
|
Shape: |
|
- Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` or :math:`(C_{in}, D_{in}, H_{in}, W_{in})` |
|
- Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` or |
|
:math:`(C_{out}, D_{out}, H_{out}, W_{out})`, where |
|
|
|
.. math:: |
|
D_{out} = (D_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0] |
|
\times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1 |
|
.. math:: |
|
H_{out} = (H_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1] |
|
\times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1 |
|
.. math:: |
|
W_{out} = (W_{in} - 1) \times \text{stride}[2] - 2 \times \text{padding}[2] + \text{dilation}[2] |
|
\times (\text{kernel\_size}[2] - 1) + \text{output\_padding}[2] + 1 |
|
|
|
|
|
Attributes: |
|
weight (Tensor): the learnable weights of the module of shape |
|
:math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},` |
|
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]}, \text{kernel\_size[2]})`. |
|
The values of these weights are sampled from |
|
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where |
|
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel\_size}[i]}` |
|
bias (Tensor): the learnable bias of the module of shape (out_channels) |
|
If :attr:`bias` is ``True``, then the values of these weights are |
|
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where |
|
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel\_size}[i]}` |
|
|
|
Examples:: |
|
|
|
>>> # With square kernels and equal stride |
|
>>> m = nn.ConvTranspose3d(16, 33, 3, stride=2) |
|
>>> # non-square kernels and unequal stride and with padding |
|
>>> m = nn.ConvTranspose3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(0, 4, 2)) |
|
>>> input = torch.randn(20, 16, 10, 50, 100) |
|
>>> output = m(input) |
|
|
|
.. _`here`: |
|
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md |
|
|
|
.. _`Deconvolutional Networks`: |
|
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: _size_3_t, |
|
stride: _size_3_t = 1, |
|
padding: _size_3_t = 0, |
|
output_padding: _size_3_t = 0, |
|
groups: int = 1, |
|
bias: bool = True, |
|
dilation: _size_3_t = 1, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
kernel_size = _triple(kernel_size) |
|
stride = _triple(stride) |
|
padding = _triple(padding) |
|
dilation = _triple(dilation) |
|
output_padding = _triple(output_padding) |
|
super(ConvTranspose3d, self).__init__( |
|
in_channels, out_channels, kernel_size, stride, padding, dilation, |
|
True, output_padding, groups, bias, padding_mode, **factory_kwargs) |
|
|
|
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor: |
|
if self.padding_mode != 'zeros': |
|
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose3d') |
|
|
|
assert isinstance(self.padding, tuple) |
|
|
|
|
|
num_spatial_dims = 3 |
|
output_padding = self._output_padding( |
|
input, output_size, self.stride, self.padding, self.kernel_size, |
|
num_spatial_dims, self.dilation) |
|
|
|
return F.conv_transpose3d( |
|
input, self.weight, self.bias, self.stride, self.padding, |
|
output_padding, self.groups, self.dilation) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _ConvTransposeMixin(_ConvTransposeNd): |
|
def __init__(self, *args, **kwargs): |
|
warnings.warn( |
|
"_ConvTransposeMixin is a deprecated internal class. " |
|
"Please consider using public APIs.") |
|
super(_ConvTransposeMixin, self).__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _LazyConvXdMixin(LazyModuleMixin): |
|
groups: int |
|
transposed: bool |
|
in_channels: int |
|
out_channels: int |
|
kernel_size: Tuple[int, ...] |
|
weight: UninitializedParameter |
|
bias: UninitializedParameter |
|
|
|
def reset_parameters(self) -> None: |
|
|
|
if not self.has_uninitialized_params() and self.in_channels != 0: |
|
|
|
|
|
|
|
super().reset_parameters() |
|
|
|
|
|
def initialize_parameters(self, input) -> None: |
|
|
|
if self.has_uninitialized_params(): |
|
self.in_channels = self._get_in_channels(input) |
|
if self.in_channels % self.groups != 0: |
|
raise ValueError('in_channels must be divisible by groups') |
|
assert isinstance(self.weight, UninitializedParameter) |
|
if self.transposed: |
|
self.weight.materialize(( |
|
self.in_channels, self.out_channels // self.groups, *self.kernel_size)) |
|
else: |
|
self.weight.materialize(( |
|
self.out_channels, self.in_channels // self.groups, *self.kernel_size)) |
|
if self.bias is not None: |
|
assert isinstance(self.bias, UninitializedParameter) |
|
self.bias.materialize((self.out_channels,)) |
|
self.reset_parameters() |
|
|
|
|
|
def _get_in_channels(self, input: Tensor) -> int: |
|
num_spatial_dims = self._get_num_spatial_dims() |
|
num_dims_no_batch = num_spatial_dims + 1 |
|
num_dims_batch = num_dims_no_batch + 1 |
|
if input.dim() not in (num_dims_no_batch, num_dims_batch): |
|
raise RuntimeError("Expected {}D (unbatched) or {}D (batched) input to {}, but " |
|
"got input of size: {}".format(num_dims_no_batch, num_dims_batch, |
|
self.__class__.__name__, input.shape)) |
|
return input.shape[1] if input.dim() == num_dims_batch else input.shape[0] |
|
|
|
|
|
|
|
def _get_num_spatial_dims(self) -> int: |
|
raise NotImplementedError() |
|
|
|
|
|
|
|
class LazyConv1d(_LazyConvXdMixin, Conv1d): |
|
r"""A :class:`torch.nn.Conv1d` module with lazy initialization of |
|
the ``in_channels`` argument of the :class:`Conv1d` that is inferred from |
|
the ``input.size(1)``. |
|
The attributes that will be lazily initialized are `weight` and `bias`. |
|
|
|
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation |
|
on lazy modules and their limitations. |
|
|
|
Args: |
|
out_channels (int): Number of channels produced by the convolution |
|
kernel_size (int or tuple): Size of the convolving kernel |
|
stride (int or tuple, optional): Stride of the convolution. Default: 1 |
|
padding (int or tuple, optional): Zero-padding added to both sides of |
|
the input. Default: 0 |
|
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, |
|
``'replicate'`` or ``'circular'``. Default: ``'zeros'`` |
|
dilation (int or tuple, optional): Spacing between kernel |
|
elements. Default: 1 |
|
groups (int, optional): Number of blocked connections from input |
|
channels to output channels. Default: 1 |
|
bias (bool, optional): If ``True``, adds a learnable bias to the |
|
output. Default: ``True`` |
|
|
|
.. seealso:: :class:`torch.nn.Conv1d` and :class:`torch.nn.modules.lazy.LazyModuleMixin` |
|
""" |
|
|
|
|
|
|
|
cls_to_become = Conv1d |
|
|
|
def __init__( |
|
self, |
|
out_channels: int, |
|
kernel_size: _size_1_t, |
|
stride: _size_1_t = 1, |
|
padding: _size_1_t = 0, |
|
dilation: _size_1_t = 1, |
|
groups: int = 1, |
|
bias: bool = True, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super().__init__( |
|
0, |
|
0, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
groups, |
|
|
|
|
|
False, |
|
padding_mode, |
|
**factory_kwargs |
|
) |
|
self.weight = UninitializedParameter(**factory_kwargs) |
|
self.out_channels = out_channels |
|
if bias: |
|
self.bias = UninitializedParameter(**factory_kwargs) |
|
|
|
def _get_num_spatial_dims(self) -> int: |
|
return 1 |
|
|
|
|
|
|
|
class LazyConv2d(_LazyConvXdMixin, Conv2d): |
|
r"""A :class:`torch.nn.Conv2d` module with lazy initialization of |
|
the ``in_channels`` argument of the :class:`Conv2d` that is inferred from |
|
the ``input.size(1)``. |
|
The attributes that will be lazily initialized are `weight` and `bias`. |
|
|
|
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation |
|
on lazy modules and their limitations. |
|
|
|
Args: |
|
out_channels (int): Number of channels produced by the convolution |
|
kernel_size (int or tuple): Size of the convolving kernel |
|
stride (int or tuple, optional): Stride of the convolution. Default: 1 |
|
padding (int or tuple, optional): Zero-padding added to both sides of |
|
the input. Default: 0 |
|
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, |
|
``'replicate'`` or ``'circular'``. Default: ``'zeros'`` |
|
dilation (int or tuple, optional): Spacing between kernel |
|
elements. Default: 1 |
|
groups (int, optional): Number of blocked connections from input |
|
channels to output channels. Default: 1 |
|
bias (bool, optional): If ``True``, adds a learnable bias to the |
|
output. Default: ``True`` |
|
|
|
.. seealso:: :class:`torch.nn.Conv2d` and :class:`torch.nn.modules.lazy.LazyModuleMixin` |
|
""" |
|
|
|
|
|
|
|
cls_to_become = Conv2d |
|
|
|
def __init__( |
|
self, |
|
out_channels: int, |
|
kernel_size: _size_2_t, |
|
stride: _size_2_t = 1, |
|
padding: _size_2_t = 0, |
|
dilation: _size_2_t = 1, |
|
groups: int = 1, |
|
bias: bool = True, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super().__init__( |
|
0, |
|
0, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
groups, |
|
|
|
|
|
False, |
|
padding_mode, |
|
**factory_kwargs |
|
) |
|
self.weight = UninitializedParameter(**factory_kwargs) |
|
self.out_channels = out_channels |
|
if bias: |
|
self.bias = UninitializedParameter(**factory_kwargs) |
|
|
|
def _get_num_spatial_dims(self) -> int: |
|
return 2 |
|
|
|
|
|
|
|
class LazyConv3d(_LazyConvXdMixin, Conv3d): |
|
r"""A :class:`torch.nn.Conv3d` module with lazy initialization of |
|
the ``in_channels`` argument of the :class:`Conv3d` that is inferred from |
|
the ``input.size(1)``. |
|
The attributes that will be lazily initialized are `weight` and `bias`. |
|
|
|
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation |
|
on lazy modules and their limitations. |
|
|
|
Args: |
|
out_channels (int): Number of channels produced by the convolution |
|
kernel_size (int or tuple): Size of the convolving kernel |
|
stride (int or tuple, optional): Stride of the convolution. Default: 1 |
|
padding (int or tuple, optional): Zero-padding added to both sides of |
|
the input. Default: 0 |
|
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, |
|
``'replicate'`` or ``'circular'``. Default: ``'zeros'`` |
|
dilation (int or tuple, optional): Spacing between kernel |
|
elements. Default: 1 |
|
groups (int, optional): Number of blocked connections from input |
|
channels to output channels. Default: 1 |
|
bias (bool, optional): If ``True``, adds a learnable bias to the |
|
output. Default: ``True`` |
|
|
|
.. seealso:: :class:`torch.nn.Conv3d` and :class:`torch.nn.modules.lazy.LazyModuleMixin` |
|
""" |
|
|
|
|
|
|
|
cls_to_become = Conv3d |
|
|
|
def __init__( |
|
self, |
|
out_channels: int, |
|
kernel_size: _size_3_t, |
|
stride: _size_3_t = 1, |
|
padding: _size_3_t = 0, |
|
dilation: _size_3_t = 1, |
|
groups: int = 1, |
|
bias: bool = True, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super().__init__( |
|
0, |
|
0, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
groups, |
|
|
|
|
|
False, |
|
padding_mode, |
|
**factory_kwargs |
|
) |
|
self.weight = UninitializedParameter(**factory_kwargs) |
|
self.out_channels = out_channels |
|
if bias: |
|
self.bias = UninitializedParameter(**factory_kwargs) |
|
|
|
def _get_num_spatial_dims(self) -> int: |
|
return 3 |
|
|
|
|
|
|
|
class LazyConvTranspose1d(_LazyConvXdMixin, ConvTranspose1d): |
|
r"""A :class:`torch.nn.ConvTranspose1d` module with lazy initialization of |
|
the ``in_channels`` argument of the :class:`ConvTranspose1d` that is inferred from |
|
the ``input.size(1)``. |
|
The attributes that will be lazily initialized are `weight` and `bias`. |
|
|
|
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation |
|
on lazy modules and their limitations. |
|
|
|
Args: |
|
out_channels (int): Number of channels produced by the convolution |
|
kernel_size (int or tuple): Size of the convolving kernel |
|
stride (int or tuple, optional): Stride of the convolution. Default: 1 |
|
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding |
|
will be added to both sides of the input. Default: 0 |
|
output_padding (int or tuple, optional): Additional size added to one side |
|
of the output shape. Default: 0 |
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 |
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` |
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 |
|
|
|
.. seealso:: :class:`torch.nn.ConvTranspose1d` and :class:`torch.nn.modules.lazy.LazyModuleMixin` |
|
""" |
|
|
|
|
|
|
|
cls_to_become = ConvTranspose1d |
|
|
|
def __init__( |
|
self, |
|
out_channels: int, |
|
kernel_size: _size_1_t, |
|
stride: _size_1_t = 1, |
|
padding: _size_1_t = 0, |
|
output_padding: _size_1_t = 0, |
|
groups: int = 1, |
|
bias: bool = True, |
|
dilation: _size_1_t = 1, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super().__init__( |
|
0, |
|
0, |
|
kernel_size, |
|
stride, |
|
padding, |
|
output_padding, |
|
groups, |
|
|
|
|
|
False, |
|
dilation, |
|
padding_mode, |
|
**factory_kwargs |
|
) |
|
self.weight = UninitializedParameter(**factory_kwargs) |
|
self.out_channels = out_channels |
|
if bias: |
|
self.bias = UninitializedParameter(**factory_kwargs) |
|
|
|
def _get_num_spatial_dims(self) -> int: |
|
return 1 |
|
|
|
|
|
|
|
class LazyConvTranspose2d(_LazyConvXdMixin, ConvTranspose2d): |
|
r"""A :class:`torch.nn.ConvTranspose2d` module with lazy initialization of |
|
the ``in_channels`` argument of the :class:`ConvTranspose2d` that is inferred from |
|
the ``input.size(1)``. |
|
The attributes that will be lazily initialized are `weight` and `bias`. |
|
|
|
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation |
|
on lazy modules and their limitations. |
|
|
|
Args: |
|
out_channels (int): Number of channels produced by the convolution |
|
kernel_size (int or tuple): Size of the convolving kernel |
|
stride (int or tuple, optional): Stride of the convolution. Default: 1 |
|
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding |
|
will be added to both sides of each dimension in the input. Default: 0 |
|
output_padding (int or tuple, optional): Additional size added to one side |
|
of each dimension in the output shape. Default: 0 |
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 |
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` |
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 |
|
|
|
.. seealso:: :class:`torch.nn.ConvTranspose2d` and :class:`torch.nn.modules.lazy.LazyModuleMixin` |
|
""" |
|
|
|
|
|
|
|
cls_to_become = ConvTranspose2d |
|
|
|
def __init__( |
|
self, |
|
out_channels: int, |
|
kernel_size: _size_2_t, |
|
stride: _size_2_t = 1, |
|
padding: _size_2_t = 0, |
|
output_padding: _size_2_t = 0, |
|
groups: int = 1, |
|
bias: bool = True, |
|
dilation: int = 1, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super().__init__( |
|
0, |
|
0, |
|
kernel_size, |
|
stride, |
|
padding, |
|
output_padding, |
|
groups, |
|
|
|
|
|
False, |
|
dilation, |
|
padding_mode, |
|
**factory_kwargs |
|
) |
|
self.weight = UninitializedParameter(**factory_kwargs) |
|
self.out_channels = out_channels |
|
if bias: |
|
self.bias = UninitializedParameter(**factory_kwargs) |
|
|
|
def _get_num_spatial_dims(self) -> int: |
|
return 2 |
|
|
|
|
|
|
|
class LazyConvTranspose3d(_LazyConvXdMixin, ConvTranspose3d): |
|
r"""A :class:`torch.nn.ConvTranspose3d` module with lazy initialization of |
|
the ``in_channels`` argument of the :class:`ConvTranspose3d` that is inferred from |
|
the ``input.size(1)``. |
|
The attributes that will be lazily initialized are `weight` and `bias`. |
|
|
|
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation |
|
on lazy modules and their limitations. |
|
|
|
Args: |
|
out_channels (int): Number of channels produced by the convolution |
|
kernel_size (int or tuple): Size of the convolving kernel |
|
stride (int or tuple, optional): Stride of the convolution. Default: 1 |
|
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding |
|
will be added to both sides of each dimension in the input. Default: 0 |
|
output_padding (int or tuple, optional): Additional size added to one side |
|
of each dimension in the output shape. Default: 0 |
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 |
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` |
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 |
|
|
|
.. seealso:: :class:`torch.nn.ConvTranspose3d` and :class:`torch.nn.modules.lazy.LazyModuleMixin` |
|
""" |
|
|
|
|
|
|
|
cls_to_become = ConvTranspose3d |
|
|
|
def __init__( |
|
self, |
|
out_channels: int, |
|
kernel_size: _size_3_t, |
|
stride: _size_3_t = 1, |
|
padding: _size_3_t = 0, |
|
output_padding: _size_3_t = 0, |
|
groups: int = 1, |
|
bias: bool = True, |
|
dilation: _size_3_t = 1, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super().__init__( |
|
0, |
|
0, |
|
kernel_size, |
|
stride, |
|
padding, |
|
output_padding, |
|
groups, |
|
|
|
|
|
False, |
|
dilation, |
|
padding_mode, |
|
**factory_kwargs |
|
) |
|
self.weight = UninitializedParameter(**factory_kwargs) |
|
self.out_channels = out_channels |
|
if bias: |
|
self.bias = UninitializedParameter(**factory_kwargs) |
|
|
|
def _get_num_spatial_dims(self) -> int: |
|
return 3 |
|
|