|
import ast |
|
import dis |
|
import enum |
|
import inspect |
|
import re |
|
import builtins |
|
import torch |
|
import warnings |
|
from .._jit_internal import List, Tuple, is_tuple, is_list, Dict, is_dict, Optional, \ |
|
is_optional, _qualified_name, Any, Future, is_future, is_ignored_fn, Union, is_union |
|
from .._jit_internal import BroadcastingList1, BroadcastingList2, BroadcastingList3 |
|
from ._state import _get_script_class |
|
|
|
from torch._C import TensorType, TupleType, FloatType, IntType, ComplexType, \ |
|
ListType, StringType, DictType, BoolType, OptionalType, InterfaceType, AnyType, \ |
|
NoneType, DeviceObjType, StreamObjType, FutureType, EnumType, UnionType, NumberType |
|
|
|
|
|
from textwrap import dedent |
|
from torch._sources import get_source_lines_and_file |
|
from typing import Type |
|
|
|
if torch.distributed.rpc.is_available(): |
|
from .._jit_internal import RRef, is_rref |
|
from torch._C import RRefType |
|
|
|
from torch._ops import OpOverloadPacket |
|
|
|
class Module(object): |
|
def __init__(self, name, members): |
|
self.name = name |
|
self.members = members |
|
|
|
def __getattr__(self, name): |
|
try: |
|
return self.members[name] |
|
except KeyError: |
|
raise RuntimeError(f"Module {self.name} has no member called {name}") from None |
|
|
|
|
|
class EvalEnv(object): |
|
env = { |
|
'torch': Module('torch', {'Tensor': torch.Tensor}), |
|
'Tensor': torch.Tensor, |
|
'typing': Module('typing', {'Tuple': Tuple}), |
|
'Tuple': Tuple, |
|
'List': List, |
|
'Dict': Dict, |
|
'Optional': Optional, |
|
'Union': Union, |
|
'Future': Future |
|
} |
|
|
|
def __init__(self, rcb): |
|
self.rcb = rcb |
|
if torch.distributed.rpc.is_available(): |
|
self.env['RRef'] = RRef |
|
|
|
def __getitem__(self, name): |
|
if name in self.env: |
|
return self.env[name] |
|
if self.rcb is not None: |
|
return self.rcb(name) |
|
return getattr(builtins, name, None) |
|
|
|
def get_signature(fn, rcb, loc, is_method): |
|
if isinstance(fn, OpOverloadPacket): |
|
signature = try_real_annotations(fn.op, loc) |
|
else: |
|
signature = try_real_annotations(fn, loc) |
|
if signature is not None and is_method: |
|
|
|
|
|
|
|
|
|
param_types, return_type = signature |
|
param_types = param_types[1:] |
|
signature = (param_types, return_type) |
|
|
|
if signature is None: |
|
type_line, source = None, None |
|
try: |
|
source = dedent(''.join(get_source_lines_and_file(fn)[0])) |
|
type_line = get_type_line(source) |
|
except TypeError: |
|
pass |
|
|
|
|
|
if type_line is not None: |
|
signature = parse_type_line(type_line, rcb, loc) |
|
|
|
return signature |
|
|
|
|
|
def is_function_or_method(the_callable): |
|
|
|
|
|
return inspect.isfunction(the_callable) or inspect.ismethod(the_callable) |
|
|
|
|
|
def is_vararg(the_callable): |
|
if not is_function_or_method(the_callable) and hasattr(the_callable, '__call__'): |
|
|
|
|
|
the_callable = the_callable.__call__ |
|
|
|
if is_function_or_method(the_callable): |
|
return inspect.getfullargspec(the_callable).varargs is not None |
|
else: |
|
return False |
|
|
|
|
|
def get_param_names(fn, n_args): |
|
if isinstance(fn, OpOverloadPacket): |
|
fn = fn.op |
|
|
|
if not is_function_or_method(fn) and hasattr(fn, '__call__') and is_function_or_method(fn.__call__): |
|
|
|
fn = fn.__call__ |
|
|
|
if is_function_or_method(fn): |
|
if is_ignored_fn(fn): |
|
fn = inspect.unwrap(fn) |
|
return inspect.getfullargspec(fn).args |
|
else: |
|
|
|
|
|
return [str(i) for i in range(n_args)] |
|
|
|
|
|
def check_fn(fn, loc): |
|
|
|
try: |
|
source = dedent(''.join(get_source_lines_and_file(fn)[0])) |
|
except (TypeError, IOError): |
|
return |
|
if source is None: |
|
return |
|
|
|
py_ast = ast.parse(source) |
|
if len(py_ast.body) == 1 and isinstance(py_ast.body[0], ast.ClassDef): |
|
raise torch.jit.frontend.FrontendError( |
|
loc, f"Cannot instantiate class '{py_ast.body[0].name}' in a script function") |
|
if len(py_ast.body) != 1 or not isinstance(py_ast.body[0], ast.FunctionDef): |
|
raise torch.jit.frontend.FrontendError(loc, "Expected a single top-level function") |
|
|
|
|
|
def _eval_no_call(stmt, glob, loc): |
|
"""Evaluate statement as long as it does not contain any method/function calls""" |
|
bytecode = compile(stmt, "", mode="eval") |
|
for insn in dis.get_instructions(bytecode): |
|
if "CALL" in insn.opname: |
|
raise RuntimeError(f"Type annotation should not contain calls, but '{stmt}' does") |
|
return eval(bytecode, glob, loc) |
|
|
|
|
|
def parse_type_line(type_line, rcb, loc): |
|
"""Parses a type annotation specified as a comment. |
|
|
|
Example inputs: |
|
# type: (Tensor, torch.Tensor) -> Tuple[Tensor] |
|
# type: (Tensor, Tuple[Tensor, Tensor]) -> Tensor |
|
""" |
|
arg_ann_str, ret_ann_str = split_type_line(type_line) |
|
|
|
try: |
|
arg_ann = _eval_no_call(arg_ann_str, {}, EvalEnv(rcb)) |
|
except (NameError, SyntaxError) as e: |
|
raise RuntimeError("Failed to parse the argument list of a type annotation") from e |
|
|
|
if not isinstance(arg_ann, tuple): |
|
arg_ann = (arg_ann,) |
|
|
|
try: |
|
ret_ann = _eval_no_call(ret_ann_str, {}, EvalEnv(rcb)) |
|
except (NameError, SyntaxError) as e: |
|
raise RuntimeError("Failed to parse the return type of a type annotation") from e |
|
|
|
arg_types = [ann_to_type(ann, loc) for ann in arg_ann] |
|
return arg_types, ann_to_type(ret_ann, loc) |
|
|
|
|
|
def get_type_line(source): |
|
"""Tries to find the line containing a comment with the type annotation.""" |
|
type_comment = '# type:' |
|
|
|
lines = source.split('\n') |
|
lines = [(line_num, line) for line_num, line in enumerate(lines)] |
|
type_lines = list(filter(lambda line: type_comment in line[1], lines)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
type_pattern = re.compile("# type:\\ ignore(\\[[a-zA-Z-]+\\])?$") |
|
type_lines = list(filter(lambda line: not type_pattern.search(line[1]), |
|
type_lines)) |
|
|
|
if len(type_lines) == 0: |
|
|
|
wrong_type_pattern = re.compile("#[\t ]*type[\t ]*(?!: ignore(\\[.*\\])?$):") |
|
wrong_type_lines = list(filter(lambda line: wrong_type_pattern.search(line[1]), lines)) |
|
if len(wrong_type_lines) > 0: |
|
raise RuntimeError("The annotation prefix in line " + str(wrong_type_lines[0][0]) |
|
+ " is probably invalid.\nIt must be '# type:'" |
|
+ "\nSee PEP 484 (https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code)" |
|
+ "\nfor examples") |
|
return None |
|
elif len(type_lines) == 1: |
|
|
|
return type_lines[0][1].strip() |
|
|
|
|
|
|
|
return_line = None |
|
parameter_type_lines = [] |
|
for line_num, line in type_lines: |
|
if '# type: (...) -> ' in line: |
|
return_line = (line_num, line) |
|
break |
|
elif type_comment in line: |
|
parameter_type_lines.append(line) |
|
if return_line is None: |
|
raise RuntimeError( |
|
"Return type line '# type: (...) -> ...' not found on multiline " |
|
"type annotation\nfor type lines:\n" + |
|
'\n'.join([line[1] for line in type_lines]) + |
|
"\n(See PEP 484 https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code)") |
|
|
|
def get_parameter_type(line): |
|
item_type = line[line.find(type_comment) + len(type_comment):] |
|
return item_type.strip() |
|
|
|
types = map(get_parameter_type, parameter_type_lines) |
|
parameter_types = ", ".join(types) |
|
|
|
return return_line[1].replace("...", parameter_types) |
|
|
|
|
|
def split_type_line(type_line): |
|
"""Splits the comment with the type annotation into parts for argument and return types. |
|
|
|
For example, for an input of: |
|
# type: (Tensor, torch.Tensor) -> Tuple[Tensor, Tensor] |
|
|
|
This function will return: |
|
("(Tensor, torch.Tensor)", "Tuple[Tensor, Tensor]") |
|
|
|
""" |
|
start_offset = len('# type:') |
|
try: |
|
arrow_pos = type_line.index('->') |
|
except ValueError: |
|
raise RuntimeError("Syntax error in type annotation (cound't find `->`)") from None |
|
return type_line[start_offset:arrow_pos].strip(), type_line[arrow_pos + 2:].strip() |
|
|
|
|
|
def try_real_annotations(fn, loc): |
|
"""Tries to use the Py3.5+ annotation syntax to get the type.""" |
|
try: |
|
|
|
|
|
|
|
sig = inspect.signature(fn) |
|
except ValueError: |
|
return None |
|
|
|
all_annots = [sig.return_annotation] + [p.annotation for p in sig.parameters.values()] |
|
if all(ann is sig.empty for ann in all_annots): |
|
return None |
|
|
|
arg_types = [ann_to_type(p.annotation, loc) |
|
for p in sig.parameters.values()] |
|
return_type = ann_to_type(sig.return_annotation, loc) |
|
return arg_types, return_type |
|
|
|
|
|
|
|
|
|
def get_enum_value_type(e: Type[enum.Enum], loc): |
|
enum_values: List[enum.Enum] = list(e) |
|
if not enum_values: |
|
raise ValueError(f"No enum values defined for: '{e.__class__}'") |
|
|
|
types = {type(v.value) for v in enum_values} |
|
ir_types = [try_ann_to_type(t, loc) for t in types] |
|
|
|
|
|
|
|
|
|
|
|
res = torch._C.unify_type_list(ir_types) |
|
if not res: |
|
return AnyType.get() |
|
return res |
|
|
|
def is_tensor(ann): |
|
if issubclass(ann, torch.Tensor): |
|
return True |
|
|
|
if issubclass(ann, (torch.LongTensor, torch.DoubleTensor, torch.FloatTensor, |
|
torch.IntTensor, torch.ShortTensor, torch.HalfTensor, |
|
torch.CharTensor, torch.ByteTensor, torch.BoolTensor)): |
|
warnings.warn("TorchScript will treat type annotations of Tensor " |
|
"dtype-specific subtypes as if they are normal Tensors. " |
|
"dtype constraints are not enforced in compilation either.") |
|
return True |
|
|
|
return False |
|
|
|
|
|
|
|
def try_ann_to_type(ann, loc): |
|
if ann is inspect.Signature.empty: |
|
return TensorType.getInferred() |
|
if ann is None: |
|
return NoneType.get() |
|
if inspect.isclass(ann) and is_tensor(ann): |
|
return TensorType.get() |
|
if is_tuple(ann): |
|
|
|
if len(ann.__args__) == 1 and ann.__args__[0] == (): |
|
return TupleType([]) |
|
return TupleType([try_ann_to_type(a, loc) for a in ann.__args__]) |
|
if is_list(ann): |
|
elem_type = try_ann_to_type(ann.__args__[0], loc) |
|
if elem_type: |
|
return ListType(elem_type) |
|
if is_dict(ann): |
|
key = try_ann_to_type(ann.__args__[0], loc) |
|
value = try_ann_to_type(ann.__args__[1], loc) |
|
|
|
if key is None: |
|
raise ValueError(f"Unknown type annotation: '{ann.__args__[0]}' at {loc.highlight()}") |
|
if value is None: |
|
raise ValueError(f"Unknown type annotation: '{ann.__args__[1]}' at {loc.highlight()}") |
|
return DictType(key, value) |
|
if is_optional(ann): |
|
if issubclass(ann.__args__[1], type(None)): |
|
contained = ann.__args__[0] |
|
else: |
|
contained = ann.__args__[1] |
|
valid_type = try_ann_to_type(contained, loc) |
|
msg = "Unsupported annotation {} could not be resolved because {} could not be resolved." |
|
assert valid_type, msg.format(repr(ann), repr(contained)) |
|
return OptionalType(valid_type) |
|
if is_union(ann): |
|
|
|
if set(ann.__args__) == set([int, float, complex]): |
|
return NumberType.get() |
|
inner: List = [] |
|
|
|
|
|
|
|
for a in ann.__args__: |
|
if a is None: |
|
inner.append(NoneType.get()) |
|
maybe_type = try_ann_to_type(a, loc) |
|
msg = "Unsupported annotation {} could not be resolved because {} could not be resolved." |
|
assert maybe_type, msg.format(repr(ann), repr(maybe_type)) |
|
inner.append(maybe_type) |
|
return UnionType(inner) |
|
if torch.distributed.rpc.is_available() and is_rref(ann): |
|
return RRefType(try_ann_to_type(ann.__args__[0], loc)) |
|
if is_future(ann): |
|
return FutureType(try_ann_to_type(ann.__args__[0], loc)) |
|
if ann is float: |
|
return FloatType.get() |
|
if ann is complex: |
|
return ComplexType.get() |
|
if ann is int: |
|
return IntType.get() |
|
if ann is str: |
|
return StringType.get() |
|
if ann is bool: |
|
return BoolType.get() |
|
if ann is Any: |
|
return AnyType.get() |
|
if ann is type(None): |
|
return NoneType.get() |
|
if inspect.isclass(ann) and hasattr(ann, "__torch_script_interface__"): |
|
return InterfaceType(ann.__torch_script_interface__) |
|
if ann is torch.device: |
|
return DeviceObjType.get() |
|
if ann is torch.Stream: |
|
return StreamObjType.get() |
|
if ann is torch.dtype: |
|
return IntType.get() |
|
if inspect.isclass(ann) and issubclass(ann, enum.Enum): |
|
if _get_script_class(ann) is None: |
|
scripted_class = torch.jit._script._recursive_compile_class(ann, loc) |
|
name = scripted_class.qualified_name() |
|
else: |
|
name = _qualified_name(ann) |
|
return EnumType(name, get_enum_value_type(ann, loc), list(ann)) |
|
if inspect.isclass(ann): |
|
maybe_script_class = _get_script_class(ann) |
|
if maybe_script_class is not None: |
|
return maybe_script_class |
|
if torch._jit_internal.can_compile_class(ann): |
|
return torch.jit._script._recursive_compile_class(ann, loc) |
|
|
|
|
|
def fake_rcb(key): |
|
return None |
|
return torch._C._resolve_type_from_object(ann, loc, fake_rcb) |
|
|
|
|
|
def ann_to_type(ann, loc): |
|
the_type = try_ann_to_type(ann, loc) |
|
if the_type is not None: |
|
return the_type |
|
raise ValueError(f"Unknown type annotation: '{ann}' at {loc.highlight()}") |
|
|
|
|
|
__all__ = [ |
|
'Any', |
|
'List', |
|
'BroadcastingList1', |
|
'BroadcastingList2', |
|
'BroadcastingList3', |
|
'Tuple', |
|
'is_tuple', |
|
'is_list', |
|
'Dict', |
|
'is_dict', |
|
'is_optional', |
|
'is_union', |
|
'TensorType', |
|
'TupleType', |
|
'FloatType', |
|
'ComplexType', |
|
'IntType', |
|
'ListType', |
|
'StringType', |
|
'DictType', |
|
'AnyType', |
|
'Module', |
|
|
|
|
|
'get_signature', |
|
'check_fn', |
|
'get_param_names', |
|
'parse_type_line', |
|
'get_type_line', |
|
'split_type_line', |
|
'try_real_annotations', |
|
'try_ann_to_type', |
|
'ann_to_type', |
|
] |
|
|