|
#pragma once |
|
|
|
|
|
|
|
#include <ATen/core/TensorBase.h> |
|
#include <ATen/native/TensorProperties.h> |
|
#include <ATen/native/CanUse32BitIndexMath.h> |
|
|
|
namespace at { namespace native { |
|
|
|
namespace detail { |
|
|
|
enum class GridSamplerInterpolation {Bilinear, Nearest, Bicubic}; |
|
enum class GridSamplerPadding {Zeros, Border, Reflection}; |
|
|
|
} |
|
|
|
using detail::GridSamplerInterpolation; |
|
using detail::GridSamplerPadding; |
|
|
|
namespace { |
|
|
|
|
|
void check_grid_sampler_common( |
|
const TensorBase& input, |
|
const TensorBase& grid |
|
) { |
|
auto input_opt = input.options(); |
|
auto grid_opt = grid.options(); |
|
|
|
TORCH_CHECK( |
|
input.defined(), |
|
"grid_sampler(): expected input to not be undefined"); |
|
TORCH_CHECK( |
|
grid.defined(), |
|
"grid_sampler(): expected grid to not be undefined"); |
|
TORCH_CHECK( |
|
input_opt.device() == grid_opt.device(), |
|
"grid_sampler(): expected input and grid to be on same device, but input " |
|
"is on ", input_opt.device(), " and grid is on ", grid_opt.device()); |
|
TORCH_CHECK( |
|
input_opt.layout() == kStrided && grid_opt.layout() == kStrided, |
|
"grid_sampler(): expected input and grid to have torch.strided layout, but " |
|
"input has ", input_opt.layout(), " and grid has ", grid_opt.layout()); |
|
TORCH_CHECK( |
|
input.size(0) == grid.size(0), |
|
"grid_sampler(): expected grid and input to have same batch size, but got " |
|
"input with sizes ", input.sizes(), " and grid with sizes ", grid.sizes()); |
|
TORCH_CHECK( |
|
grid.size(-1) == input.dim() - 2, |
|
"grid_sampler(): expected grid to have size ", input.dim() - 2, " in last " |
|
"dimension, but got grid with sizes ", grid.sizes()); |
|
|
|
for (const auto i : c10::irange(2, input.dim())) { |
|
TORCH_CHECK(input.size(i) > 0, |
|
"grid_sampler(): expected input to have non-empty spatial dimensions, " |
|
"but input has sizes ", input.sizes(), " with dimension ", i, " being " |
|
"empty"); |
|
} |
|
} |
|
|
|
|
|
void check_grid_sampler_2d( |
|
const TensorBase& input, |
|
const TensorBase& grid |
|
) { |
|
TORCH_CHECK( |
|
input.dim() == 4 && input.dim() == grid.dim(), |
|
"grid_sampler(): expected 4D input and grid with same number of " |
|
"dimensions, but got input with sizes ", input.sizes(), |
|
" and grid with sizes ", grid.sizes()); |
|
} |
|
|
|
|
|
void check_grid_sampler_3d( |
|
const TensorBase& input, |
|
const TensorBase& grid, |
|
int64_t interpolation_mode |
|
) { |
|
TORCH_CHECK( |
|
input.dim() == 5 && input.dim() == grid.dim(), |
|
"grid_sampler(): expected 5D input and grid with same number of " |
|
"dimensions, but got input with sizes ", input.sizes(), |
|
" and grid with sizes ", grid.sizes()); |
|
TORCH_CHECK( |
|
!(input.dim() == 5 && |
|
static_cast<GridSamplerInterpolation>(interpolation_mode) == |
|
GridSamplerInterpolation::Bicubic), |
|
"grid_sampler(): bicubic interpolation only supports 4D input"); |
|
} |
|
|
|
|
|
|
|
bool cond_cudnn_grid_sampler( |
|
const TensorBase& input, |
|
const TensorBase& grid |
|
) { |
|
return ( |
|
at::native::cudnn_is_acceptable(input) && |
|
at::native::cudnn_is_acceptable(grid) && |
|
at::native::canUse32BitIndexMath(input) && |
|
at::native::canUse32BitIndexMath(grid) && |
|
input.dim() == 4 && |
|
input.size(1) <= 1024); |
|
} |
|
|
|
} |
|
|
|
}} |
|
|