JSX_TTS / torch /fx /passes /split_utils.py
UMMJ's picture
Upload 5875 files
9dd3461
from dataclasses import dataclass, field
from typing import List, Optional, Dict
import torch.fx
from torch.fx.graph import map_arg
from .tools_common import NodeList
from torch.fx._compatibility import compatibility
from torch.fx.passes.utils import lift_subgraph_as_module, HolderModule
__all__ = ['getattr_recursive', 'setattr_recursive', 'Component', 'split_by_tags']
@compatibility(is_backward_compatible=False)
def getattr_recursive(obj, name):
for layer in name.split("."):
if hasattr(obj, layer):
obj = getattr(obj, layer)
else:
return None
return obj
@compatibility(is_backward_compatible=False)
def setattr_recursive(obj, attr, value):
if "." not in attr:
setattr(obj, attr, value)
else:
layer = attr.split(".")
setattr_recursive(getattr(obj, layer[0]), ".".join(layer[1:]), value)
@compatibility(is_backward_compatible=False)
@dataclass
class Component:
"""
A component serves as a container for a subgraph we want to create afterwards.
"""
graph: torch.fx.Graph
order: int
name: str
# Stores the placeholder nodes in `graph`.
input_placeholders: List = field(default_factory=list)
# Store the nodes in original graph that are placeholder in `graph`.
orig_inputs: List = field(default_factory=list)
# Store the nodes in original graph that are outputs in `graph`.
orig_outputs: List = field(default_factory=list)
# Mapping from get_attr node in original graph to get_attr node in `graph`.
getattr_maps: Dict[torch.fx.Node, torch.fx.Node] = field(default_factory=dict)
constructor_args: List[str] = field(default_factory=list)
gm: Optional[torch.fx.GraphModule] = None
@compatibility(is_backward_compatible=False)
def split_by_tags(gm: torch.fx.GraphModule, tags: List[str]) -> torch.fx.GraphModule:
"""
Splits a GraphModule using tags on its graph nodes. We honor the order of
tags. For example, we have tags = ["a", "b", "c"], the function will create
the initial submodules in the order of "a_0", "b_1", "c_2".
To set a tag:
gm.graph.nodes[idx].tag = "mytag"
This will result in all nodes with the same tag being extracted and placed in their
own submodule. For placeholder, output and get_attr node, the tag is ignored. placeholder
and output nodes are created when needed while get_attr nodes get copied to submodules
where they are used.
Given the following module def:
class SimpleModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(...)
self.linear2 = torch.nn.Linear(...)
self.linear3 = torch.nn.Linear(...)
def forward(self, in1, in2):
r1 = self.linear1(in1)
r2 = self.linear2(in2)
r3 = torch.cat([r1, r2])
return self.linear3(r3)
Marking the node corresponding to in1 with the tag sc.REQUEST_ONLY.lower() results in the following split:
ro_0:
def forward(self, in1):
self = self.root
linear1 = self.linear1(in1)
return linear1
main_1:
def forward(self, in2, linear1):
self = self.root
linear2 = self.linear2(in2)
cat_1 = torch.cat([linear1, linear2])
linear3 = self.linear3(cat_1)
return linear3
main_0:
def forward(self, in1, in2):
self = self.root
ro_0 = self.ro_0(in1)
main_1 = self.main_1(in2, ro_0)
return main_1
"""
def flatten(x: torch.fx.node.Argument) -> NodeList:
"""
Stores nodes in x to a list and returns the list.
"""
r: NodeList = []
map_arg(x, r.append)
return r
# Mapping from node in original module to node in created submodule.
node_remapping: Dict[torch.fx.Node, torch.fx.Node] = {}
# Mapping from node in original module or created submodules to
# corresponding component.
node_to_component: Dict[torch.fx.Node, Component] = {}
# Mapping from tag to the corresponding component.
tag_to_component: Dict[str, Component] = {}
# Stores all components.
all_components: List[Component] = []
# Stores nodes that will be used in main graph.
used_in_main: Dict[torch.fx.Node, None] = {}
# Main graph after split.
main_g = torch.fx.Graph()
# Mapping from node in original module to node in main graph after split.
main_remapping: Dict[torch.fx.Node, torch.fx.Node] = {}
# Output node of original module.
output_node: Optional[torch.fx.Node] = None
# Create a component for each tag, we don't expect to create other components afterwards.
for tag in tags:
comp = Component(torch.fx.Graph(), len(all_components), f"{tag}")
all_components.append(comp)
tag_to_component[tag] = comp
# Traverse the nodes in original graph and take care of them.
for node in gm.graph.nodes:
if node.op == "output":
if output_node is not None:
raise RuntimeError("Multiple output nodes in graph!")
output_node = node
continue
# Placeholders in the original graph get copied to main graph.
if node.op == "placeholder":
main_remapping[node] = main_g.placeholder(node.name, type_expr=node.type)
continue
# Get_attr nodes are ignored because we are not tagging them.
# Instead, we copy them directly to the submodules use them afterwards.
if node.op == "get_attr":
continue
# Now we process callable nodes which are nodes with op of call_module,
# call_function or call_method. Every callable nodes should be tagged.
assert hasattr(node, "tag")
upstream_components = [
node_to_component[x]
for x in flatten(node.args) + flatten(node.kwargs)
if x.op not in {"placeholder", "get_attr"}
]
comp = tag_to_component[node.tag]
node_to_component[node] = comp
# Max order of upperstream components.
mx = max((c.order for c in upstream_components), default=0)
# Expect the componet for `node` has higher order then its upstream components.
assert comp.order >= mx
# Map a input of `node` to nodes in the component's graph.
def remap_func(x):
# If input is a get_attr node, copy it to current component's graph.
# Returns the get_attr node in current component's graph.
if x.op == "get_attr":
if x not in comp.getattr_maps:
comp.getattr_maps[x] = comp.graph.get_attr(
x.target, type_expr=x.type
)
return comp.getattr_maps[x]
# If input is not a placeholder, it should have been put into a component
# already. If it's the current component then we return the corresponding
# node in the component.
if x.op != "placeholder" and node_to_component[x] == comp:
return node_remapping[x]
# If input is a placeholder or it's in other components, we want to make it
# as a placeholder in current component's graph.
if x not in comp.orig_inputs:
comp.orig_inputs.append(x)
comp.input_placeholders.append(
comp.graph.placeholder(x.name, type_expr=x.type)
)
used_in_main[x] = None
return comp.input_placeholders[
next(i for i, y in enumerate(comp.orig_inputs) if x is y)
]
n = comp.graph.node_copy(node, remap_func)
n.tag = node.tag # type: ignore[attr-defined]
node_remapping[node] = n
node_to_component[n] = comp
if output_node is None:
raise RuntimeError("Graph had no output node!")
for x in flatten(output_node.args[0]):
if x.op == "get_attr":
# We don't need components mapping for nodes of type "get_attr"
# that are consumed by the output. Only need to make sure we create
# corresponding counterparts in the resulting graph.
main_remapping[x] = main_g.get_attr(x.name, type_expr=x.type)
else:
# All component results consumed by the output node should be
# marked as "used in main".
used_in_main[x] = None
# If a node is used in main graph then we mark it as an output in the component
# it belongs to.
for n in used_in_main:
if n.op != "placeholder":
node_to_component[n].orig_outputs.append(n)
# Now we create a graphmodule for each component.
for comp in all_components:
outs = tuple(map(node_remapping.__getitem__, comp.orig_outputs))
# Take care of the args of FX output node. If there's a single
# output then the output node args is like (output_single), else
# if there're multiple outputs then the output node args is like
# ((output_0, output_1, ...)).
comp.graph.output(outs[0] if len(outs) == 1 else outs)
comp.gm = lift_subgraph_as_module(gm, comp.graph)
# Create a call_module node in main graph.
main_node = main_g.call_module(
comp.name,
args=tuple(map(main_remapping.__getitem__, comp.orig_inputs)),
kwargs=None,
)
if len(outs) == 1:
main_remapping[comp.orig_outputs[0]] = main_node
else:
for i, o in enumerate(comp.orig_outputs):
# Use Proxy to record getitem access.
main_remapping[o] = torch.fx.Proxy(main_node)[i].node # type: ignore[index]
main_g.output(map_arg(output_node.args[0], main_remapping.__getitem__))
main_root = HolderModule({comp.name: comp.gm for comp in all_components})
# If the output nodes consumes get_attr directly in the original graph,
# then we need to make sure get_attr is copied to the new graph.
for x in flatten(output_node.args[0]):
if x.op == "get_attr":
setattr(main_root, x.name, getattr_recursive(gm, x.target)) # type: ignore[arg-type]
return torch.fx.GraphModule(main_root, main_g)