|
import torch |
|
import torch.nn as nn |
|
import torch.overrides |
|
from torch.nn.modules.module import _addindent |
|
from torch.package import PackageImporter, PackageExporter |
|
import linecache |
|
from typing import Type, Dict, List, Any, Union, Optional, Set |
|
from .graph import Graph, _PyTreeCodeGen, _is_from_torch, _custom_builtins, PythonCode |
|
from ._compatibility import compatibility |
|
from torch.package import Importer, sys_importer |
|
import copy |
|
import itertools |
|
import sys |
|
import traceback |
|
from pathlib import Path |
|
import os |
|
import warnings |
|
|
|
|
|
|
|
|
|
|
|
class _EvalCacheLoader(object): |
|
def __init__(self): |
|
self.eval_cache = {} |
|
self.next_id = 0 |
|
|
|
def cache(self, src: str, globals: Dict[str, Any]): |
|
"""Store the source in a private cache, and add a lazy entry in linecache |
|
that allows the source to be retrieved by 'filename'. |
|
|
|
Args: |
|
src (str): The module source to cache |
|
globals (dict): The module globals |
|
|
|
Returns: |
|
str: The cache key (and dummy filename) generated for src. |
|
""" |
|
|
|
key = self._get_key() |
|
self.eval_cache[key] = src |
|
|
|
|
|
|
|
|
|
globals_copy = globals.copy() |
|
globals_copy['__file__'] = key |
|
globals_copy['__name__'] = key |
|
globals_copy['__loader__'] = self |
|
linecache.lazycache(key, globals_copy) |
|
|
|
return key |
|
|
|
|
|
|
|
def get_source(self, module_name) -> Optional[str]: |
|
if module_name in self.eval_cache: |
|
return self.eval_cache[module_name] |
|
return None |
|
|
|
def _get_key(self): |
|
key = f'<eval_with_key>.{self.next_id}' |
|
self.next_id += 1 |
|
return key |
|
|
|
_loader = _EvalCacheLoader() |
|
|
|
|
|
def _exec_with_source(src: str, globals: Dict[str, Any]): |
|
key = _loader.cache(src, globals) |
|
exec(compile(src, key, 'exec'), globals) |
|
|
|
|
|
def _forward_from_src(src: str, globals: Dict[str, Any]): |
|
|
|
globals_copy = globals.copy() |
|
_exec_with_source(src, globals_copy) |
|
forward_fn = globals_copy['forward'] |
|
del globals_copy['forward'] |
|
return forward_fn |
|
|
|
|
|
def _format_import_statement(name: str, obj: Any, importer: Importer) -> str: |
|
if name in _custom_builtins: |
|
return _custom_builtins[name].import_str |
|
if _is_from_torch(name): |
|
return 'import torch' |
|
module_name, attr_name = importer.get_name(obj) |
|
return f'from {module_name} import {attr_name} as {name}' |
|
|
|
|
|
def _format_import_block(globals: Dict[str, Any], importer: Importer): |
|
import_strs: Set[str] = set() |
|
for name, obj in globals.items(): |
|
import_strs.add(_format_import_statement(name, obj, importer)) |
|
return '\n'.join(import_strs) |
|
|
|
|
|
@compatibility(is_backward_compatible=True) |
|
def reduce_graph_module(body: Dict[Any, Any], import_block: str) -> torch.nn.Module: |
|
|
|
|
|
fn_src = body.get('_code') or body['code'] |
|
forward = _forward_from_src(import_block + fn_src, {}) |
|
return _deserialize_graph_module(forward, body) |
|
|
|
|
|
@compatibility(is_backward_compatible=True) |
|
def reduce_package_graph_module( |
|
importer: PackageImporter, body: Dict[Any, Any], generated_module_name: str |
|
) -> torch.nn.Module: |
|
forward = importer.import_module(generated_module_name).forward |
|
return _deserialize_graph_module(forward, body) |
|
|
|
@compatibility(is_backward_compatible=True) |
|
def reduce_deploy_graph_module( |
|
importer: PackageImporter, body: Dict[Any, Any], import_block: str |
|
) -> torch.nn.Module: |
|
ns = {} |
|
ns["__builtins__"] = importer.patched_builtins |
|
fn_src = body.get('_code') |
|
assert fn_src is not None |
|
forward = _forward_from_src(import_block + fn_src, ns) |
|
return _deserialize_graph_module(forward, body) |
|
|
|
|
|
def _deserialize_graph_module(forward, body: Dict[Any, Any]) -> torch.nn.Module: |
|
""" |
|
Deserialize a GraphModule given the dictionary of the original module, |
|
using the code to reconstruct the graph. We delete the actual graph before |
|
saving the dictionary so that changes to the in-memory graph format do not |
|
get serialized. |
|
""" |
|
|
|
|
|
class CodeOnlyModule(torch.nn.Module): |
|
def __init__(self, body): |
|
super().__init__() |
|
self.__dict__ = body |
|
|
|
|
|
CodeOnlyModule.forward = forward |
|
|
|
tracer_cls = body.get('_tracer_cls') |
|
if tracer_cls is None: |
|
from ._symbolic_trace import Tracer |
|
tracer_cls = Tracer |
|
|
|
graphmodule_cls_name = body.get('_graphmodule_cls_name', 'GraphModule') |
|
|
|
|
|
|
|
cls_tracer : Any = tracer_cls |
|
|
|
class KeepModules(cls_tracer): |
|
|
|
|
|
def is_leaf_module(self, _: torch.nn.Module, __: str) -> bool: |
|
return True |
|
|
|
com = CodeOnlyModule(body) |
|
|
|
tracer_extras = body.get('_tracer_extras', {}) |
|
graph = KeepModules().trace(com, **tracer_extras) |
|
|
|
|
|
|
|
graph._tracer_cls = tracer_cls |
|
gm = GraphModule(com, graph, class_name=graphmodule_cls_name) |
|
|
|
|
|
|
|
|
|
|
|
for k, v in body.items(): |
|
if not hasattr(gm, k): |
|
setattr(gm, k, v) |
|
return gm |
|
|
|
|
|
|
|
def _copy_attr(from_module: torch.nn.Module, to_module: torch.nn.Module, target: str): |
|
*prefix, field = target.split('.') |
|
for item in prefix: |
|
f = getattr(from_module, item) |
|
t = getattr(to_module, item, None) |
|
if f is t: |
|
|
|
|
|
|
|
|
|
return |
|
|
|
if t is None: |
|
t = torch.nn.Module() |
|
setattr(to_module, item, t) |
|
from_module, to_module = f, t |
|
|
|
orig = getattr(from_module, field) |
|
|
|
|
|
if isinstance(orig, torch.Tensor) and not isinstance(orig, torch.nn.Parameter): |
|
to_module.register_buffer(field, orig) |
|
else: |
|
setattr(to_module, field, orig) |
|
|
|
|
|
|
|
def _assign_attr(from_obj: Any, to_module: torch.nn.Module, target: str): |
|
*prefix, field = target.split('.') |
|
for item in prefix: |
|
t = getattr(to_module, item, None) |
|
|
|
if t is None: |
|
t = torch.nn.Module() |
|
setattr(to_module, item, t) |
|
to_module = t |
|
|
|
|
|
|
|
if isinstance(from_obj, torch.Tensor) and not isinstance(from_obj, torch.nn.Parameter): |
|
to_module.register_buffer(field, from_obj) |
|
else: |
|
setattr(to_module, field, from_obj) |
|
|
|
class _WrappedCall: |
|
def __init__(self, cls, cls_call): |
|
self.cls = cls |
|
self.cls_call = cls_call |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@staticmethod |
|
def _generate_error_message(frame_summary: traceback.FrameSummary) -> str: |
|
|
|
err_lineno = frame_summary.lineno |
|
assert err_lineno is not None |
|
line = frame_summary.line |
|
assert line is not None |
|
err_line_len = len(line) |
|
all_src_lines = linecache.getlines(frame_summary.filename) |
|
|
|
|
|
tb_repr = traceback.format_exc() |
|
custom_msg = ("Call using an FX-traced Module, " |
|
f"line {err_lineno} of the traced Module's " |
|
"generated forward function:") |
|
before_err = "".join(all_src_lines[err_lineno - 2 : err_lineno]) |
|
marker = "~" * err_line_len + "~~~ <--- HERE" |
|
err_and_after_err = "\n".join(all_src_lines[err_lineno : err_lineno + 2]) |
|
|
|
|
|
return "\n".join([tb_repr, custom_msg, before_err, marker, err_and_after_err]) |
|
|
|
def __call__(self, obj, *args, **kwargs): |
|
try: |
|
if self.cls_call is not None: |
|
return self.cls_call(obj, *args, **kwargs) |
|
else: |
|
return super(self.cls, obj).__call__(*args, **kwargs) |
|
except Exception as e: |
|
assert e.__traceback__ |
|
topmost_framesummary: traceback.FrameSummary = \ |
|
traceback.StackSummary.extract(traceback.walk_tb(e.__traceback__))[-1] |
|
if "eval_with_key" in topmost_framesummary.filename: |
|
print(_WrappedCall._generate_error_message(topmost_framesummary), |
|
file=sys.stderr) |
|
raise e.with_traceback(None) |
|
else: |
|
raise e |
|
|
|
@compatibility(is_backward_compatible=True) |
|
class GraphModule(torch.nn.Module): |
|
""" |
|
GraphModule is an nn.Module generated from an fx.Graph. Graphmodule has a |
|
``graph`` attribute, as well as ``code`` and ``forward`` attributes generated |
|
from that ``graph``. |
|
|
|
.. warning:: |
|
|
|
When ``graph`` is reassigned, ``code`` and ``forward`` will be automatically |
|
regenerated. However, if you edit the contents of the ``graph`` without reassigning |
|
the ``graph`` attribute itself, you must call ``recompile()`` to update the generated |
|
code. |
|
""" |
|
def __new__(cls: 'Type[GraphModule]', *args, **kwargs): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for t in cls.__mro__: |
|
c = t.__qualname__.split('.')[-1] |
|
if c != 'GraphModuleImpl': |
|
cls = t |
|
break |
|
|
|
class GraphModuleImpl(cls): |
|
pass |
|
return super().__new__(GraphModuleImpl) |
|
|
|
@compatibility(is_backward_compatible=True) |
|
def __init__(self, |
|
root: Union[torch.nn.Module, Dict[str, Any]], |
|
graph: Graph, |
|
class_name: str = 'GraphModule'): |
|
""" |
|
Construct a GraphModule. |
|
|
|
Args: |
|
|
|
root (Union[torch.nn.Module, Dict[str, Any]): |
|
``root`` can either be an nn.Module instance or a Dict mapping strings to any attribute type. |
|
In the case that ``root`` is a Module, any references to Module-based objects (via qualified |
|
name) in the Graph's Nodes' ``target`` field will be copied over from the respective place |
|
within ``root``'s Module hierarchy into the GraphModule's module hierarchy. |
|
In the case that ``root`` is a dict, the qualified name found in a Node's ``target`` will be |
|
looked up directly in the dict's keys. The object mapped to by the Dict will be copied |
|
over into the appropriate place within the GraphModule's module hierarchy. |
|
|
|
graph (Graph): ``graph`` contains the nodes this GraphModule should use for code generation |
|
|
|
class_name (str): ``name`` denotes the name of this GraphModule for debugging purposes. If it's unset, all |
|
error messages will report as originating from ``GraphModule``. It may be helpful to set this |
|
to ``root``'s original name or a name that makes sense within the context of your transform. |
|
""" |
|
super().__init__() |
|
self.__class__.__name__ = class_name |
|
if isinstance(root, torch.nn.Module): |
|
if hasattr(root, 'training'): |
|
self.training = root.training |
|
for node in graph.nodes: |
|
if node.op in ['get_attr', 'call_module']: |
|
assert isinstance(node.target, str) |
|
_copy_attr(root, self, node.target) |
|
elif isinstance(root, dict): |
|
targets_to_copy = [] |
|
for node in graph.nodes: |
|
if node.op in ['get_attr', 'call_module']: |
|
assert isinstance(node.target, str) |
|
if node.target not in root: |
|
raise RuntimeError('Node ' + str(node) + ' referenced target ' + node.target + |
|
' but that target was not provided in ``root``!') |
|
targets_to_copy.append(node.target) |
|
|
|
|
|
|
|
|
|
|
|
|
|
targets_to_copy.sort(key=lambda t: t.count('.')) |
|
for target_to_copy in targets_to_copy: |
|
_assign_attr(root[target_to_copy], self, target_to_copy) |
|
else: |
|
raise RuntimeError('Unsupported type ' + str(root) + ' passed for root!') |
|
|
|
self.graph = graph |
|
|
|
|
|
|
|
|
|
|
|
|
|
self._tracer_cls = None |
|
if self.graph._tracer_cls and '<locals>' not in self.graph._tracer_cls.__qualname__: |
|
self._tracer_cls = self.graph._tracer_cls |
|
|
|
self._tracer_extras = {} |
|
if self.graph._tracer_extras: |
|
self._tracer_extras = self.graph._tracer_extras |
|
|
|
|
|
self.meta : Dict[str, Any] = {} |
|
|
|
|
|
|
|
|
|
|
|
__jit_unused_properties__ = ['graph'] |
|
|
|
@property |
|
def graph(self) -> Graph: |
|
""" |
|
Return the ``Graph`` underlying this ``GraphModule`` |
|
""" |
|
return self._graph |
|
|
|
@graph.setter |
|
def graph(self, g : Graph) -> None: |
|
""" |
|
Set the underlying ``Graph`` for this ``GraphModule``. This will internally |
|
recompile the ``GraphModule`` so that the generated ``forward()`` function |
|
corresponds to ``g`` |
|
""" |
|
assert isinstance(g, Graph), f'Expected a Graph instance, but got {type(g)}' |
|
self._graph = g |
|
g.owning_module = self |
|
self.recompile() |
|
|
|
@compatibility(is_backward_compatible=False) |
|
def to_folder(self, folder: Union[str, os.PathLike], module_name : str = "FxModule"): |
|
"""Dumps out module to ``folder`` with ``module_name`` so that it can be |
|
imported with ``from <folder> import <module_name>`` |
|
|
|
Args: |
|
|
|
folder (Union[str, os.PathLike]): The folder to write the code out to |
|
|
|
module_name (str): Top-level name to use for the ``Module`` while |
|
writing out the code |
|
""" |
|
folder = Path(folder) |
|
Path(folder).mkdir(exist_ok=True) |
|
torch.save(self.state_dict(), folder / 'state_dict.pt') |
|
tab = " " * 4 |
|
custom_builtins = '\n'.join([v.import_str for v in _custom_builtins.values()]) |
|
model_str = f""" |
|
import torch |
|
{custom_builtins} |
|
|
|
from torch.nn import * |
|
class {module_name}(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
""" |
|
|
|
def _gen_model_repr(module_name: str, module: torch.nn.Module) -> Optional[str]: |
|
safe_reprs = [nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d] |
|
if type(module) in safe_reprs: |
|
return f"{module.__repr__()}" |
|
else: |
|
return None |
|
|
|
blobified_modules = [] |
|
for module_name, module in self.named_children(): |
|
module_str = _gen_model_repr(module_name, module) |
|
if module_str is None: |
|
module_file = folder / f'{module_name}.pt' |
|
torch.save(module, module_file) |
|
blobified_modules.append(module_name) |
|
module_repr = module.__repr__().replace('\r', ' ').replace('\n', ' ') |
|
module_str = f"torch.load(r'{module_file}') # {module_repr}" |
|
model_str += f"{tab*2}self.{module_name} = {module_str}\n" |
|
|
|
for buffer_name, buffer in self._buffers.items(): |
|
if buffer is None: |
|
continue |
|
model_str += f"{tab*2}self.register_buffer('{buffer_name}', torch.empty({list(buffer.shape)}, dtype={buffer.dtype}))\n" |
|
|
|
for param_name, param in self._parameters.items(): |
|
if param is None: |
|
continue |
|
model_str += f"{tab*2}self.{param_name} = torch.nn.Parameter(torch.empty({list(param.shape)}, dtype={param.dtype}))\n" |
|
|
|
model_str += f"{tab*2}self.load_state_dict(torch.load(r'{folder}/state_dict.pt'))\n" |
|
model_str += f"{_addindent(self.code, 4)}\n" |
|
|
|
module_file = folder / 'module.py' |
|
module_file.write_text(model_str) |
|
|
|
init_file = folder / '__init__.py' |
|
init_file.write_text('from .module import *') |
|
|
|
if len(blobified_modules) > 0: |
|
warnings.warn("Was not able to save the following children modules as reprs -" |
|
f"saved as pickled files instead: {blobified_modules}") |
|
|
|
@compatibility(is_backward_compatible=True) |
|
def add_submodule(self, target: str, m: torch.nn.Module) -> bool: |
|
""" |
|
Adds the given submodule to ``self``. |
|
|
|
This installs empty Modules where none exist yet if they are |
|
subpaths of ``target``. |
|
|
|
Args: |
|
target: The fully-qualified string name of the new submodule |
|
(See example in ``nn.Module.get_submodule`` for how to |
|
specify a fully-qualified string.) |
|
m: The submodule itself; the actual object we want to |
|
install in the current Module |
|
|
|
Return: |
|
bool: Whether or not the submodule could be inserted. For |
|
this method to return True, each object in the chain |
|
denoted by ``target`` must either a) not exist yet, |
|
or b) reference an ``nn.Module`` (not a parameter or |
|
other attribute) |
|
""" |
|
*prefix, field = target.split('.') |
|
mod: torch.nn.Module = self |
|
|
|
for item in prefix: |
|
|
|
submod = getattr(mod, item, None) |
|
|
|
if submod is None: |
|
submod = torch.nn.Module() |
|
setattr(mod, item, submod) |
|
|
|
if not isinstance(submod, torch.nn.Module): |
|
return False |
|
|
|
mod = submod |
|
|
|
mod.add_module(field, m) |
|
return True |
|
|
|
@compatibility(is_backward_compatible=True) |
|
def delete_submodule(self, target: str) -> bool: |
|
""" |
|
Deletes the given submodule from ``self``. |
|
|
|
The module will not be deleted if ``target`` is not a valid |
|
target. |
|
|
|
Args: |
|
target: The fully-qualified string name of the new submodule |
|
(See example in ``nn.Module.get_submodule`` for how to |
|
specify a fully-qualified string.) |
|
|
|
Returns: |
|
bool: Whether or not the target string referenced a |
|
submodule we want to delete. A return value of ``False`` |
|
means that the ``target`` was not a valid reference to |
|
a submodule. |
|
""" |
|
atoms = target.split(".") |
|
path, target_submod = atoms[:-1], atoms[-1] |
|
mod: torch.nn.Module = self |
|
|
|
|
|
for item in path: |
|
|
|
if not hasattr(mod, item): |
|
return False |
|
|
|
mod = getattr(mod, item) |
|
|
|
if not isinstance(mod, torch.nn.Module): |
|
return False |
|
|
|
if not hasattr(mod, target_submod): |
|
return False |
|
|
|
if not isinstance(getattr(mod, target_submod), torch.nn.Module): |
|
return False |
|
|
|
delattr(mod, target_submod) |
|
return True |
|
|
|
@compatibility(is_backward_compatible=True) |
|
def delete_all_unused_submodules(self) -> None: |
|
""" |
|
Deletes all unused submodules from ``self``. |
|
|
|
A Module is considered "used" if any one of the following is |
|
true: |
|
1. It has children that are used |
|
2. Its forward is called directly via a ``call_module`` node |
|
3. It has a non-Module attribute that is used from a |
|
``get_attr`` node |
|
|
|
This method can be called to clean up an ``nn.Module`` without |
|
manually calling ``delete_submodule`` on each unused submodule. |
|
""" |
|
used: List[str] = [] |
|
|
|
for node in self.graph.nodes: |
|
|
|
if node.op == "call_module" or node.op == "get_attr": |
|
|
|
|
|
|
|
|
|
fullpath = node.target.split(".") |
|
|
|
|
|
|
|
|
|
def join_fn(x: str, y: str) -> str: |
|
return '.'.join([x, y] if y else [x]) |
|
|
|
|
|
|
|
|
|
|
|
for path in itertools.accumulate(fullpath, join_fn): |
|
used.append(path) |
|
|
|
|
|
|
|
if node.op == "call_module": |
|
try: |
|
submod = self.get_submodule(node.target) |
|
|
|
for submod_name, _ in submod.named_modules(): |
|
if submod_name != '': |
|
used.append('.'.join([node.target, submod_name])) |
|
except AttributeError: |
|
|
|
|
|
pass |
|
|
|
to_delete = [name for name, _ in self.named_modules() |
|
if name not in used] |
|
|
|
for name in to_delete: |
|
self.delete_submodule(name) |
|
|
|
@property |
|
def code(self) -> str: |
|
""" |
|
Return the Python code generated from the ``Graph`` underlying this |
|
``GraphModule``. |
|
""" |
|
if not hasattr(self, '_code'): |
|
raise RuntimeError('Code has not been generated! Please report a bug to PyTorch') |
|
return self._code |
|
|
|
@compatibility(is_backward_compatible=True) |
|
def recompile(self) -> PythonCode: |
|
""" |
|
Recompile this GraphModule from its ``graph`` attribute. This should be |
|
called after editing the contained ``graph``, otherwise the generated |
|
code of this ``GraphModule`` will be out of date. |
|
""" |
|
if isinstance(self._graph._codegen, _PyTreeCodeGen): |
|
self._in_spec = self._graph._codegen.pytree_info.in_spec |
|
self._out_spec = self._graph._codegen.pytree_info.out_spec |
|
python_code = self._graph.python_code(root_module='self') |
|
self._code = python_code.src |
|
|
|
cls = type(self) |
|
cls.forward = _forward_from_src(self._code, python_code.globals) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cls_call = cls.__call__ if "__call__" in vars(cls) else None |
|
|
|
if '_wrapped_call' not in vars(cls): |
|
cls._wrapped_call = _WrappedCall(cls, cls_call) |
|
|
|
def call_wrapped(self, *args, **kwargs): |
|
return self._wrapped_call(self, *args, **kwargs) |
|
|
|
cls.__call__ = call_wrapped |
|
|
|
return python_code |
|
|
|
|
|
|
|
def __reduce_deploy__(self, importer: Importer): |
|
dict_without_graph = self.__dict__.copy() |
|
dict_without_graph['_graphmodule_cls_name'] = self.__class__.__name__ |
|
del dict_without_graph['_graph'] |
|
|
|
python_code = self.recompile() |
|
import_block = _format_import_block(python_code.globals, importer) |
|
return (reduce_deploy_graph_module, (dict_without_graph, import_block)) |
|
|
|
def __reduce_package__(self, exporter: PackageExporter): |
|
dict_without_graph = self.__dict__.copy() |
|
dict_without_graph['_graphmodule_cls_name'] = self.__class__.__name__ |
|
del dict_without_graph['_graph'] |
|
|
|
generated_module_name = f'fx-generated._{exporter.get_unique_id()}' |
|
python_code = self.recompile() |
|
import_block = _format_import_block(python_code.globals, exporter.importer) |
|
module_code = import_block + self.code |
|
exporter.save_source_string(generated_module_name, module_code) |
|
return (reduce_package_graph_module, (dict_without_graph, generated_module_name)) |
|
|
|
def __reduce__(self): |
|
""" |
|
Serialization of GraphModule. We serialize only the generated code, not |
|
the underlying ``Graph``. This is because ``Graph`` does not have on-disk |
|
backward-compatibility guarantees, whereas Python source code does. |
|
On the deserialization side, we symbolically trace through the generated |
|
code to regenerate the underlying ``Graph`` |
|
""" |
|
dict_without_graph = self.__dict__.copy() |
|
python_code = self.recompile() |
|
import_block = _format_import_block(python_code.globals, sys_importer) |
|
del dict_without_graph['_graph'] |
|
return (reduce_graph_module, (dict_without_graph, import_block)) |
|
|
|
|
|
|
|
|
|
def __deepcopy__(self, memo): |
|
fake_mod = torch.nn.Module() |
|
fake_mod.__dict__ = copy.deepcopy(self.__dict__) |
|
return GraphModule(fake_mod, fake_mod.__dict__['_graph']) |
|
|
|
def __copy__(self): |
|
return GraphModule(self, self.graph) |
|
|
|
@compatibility(is_backward_compatible=False) |
|
def print_readable(self): |
|
""" |
|
Return the Python code generated for current GraphModule and its children GraphModules |
|
""" |
|
verbose_python_code = self._graph.python_code(root_module='self', verbose=True) |
|
module_code = verbose_python_code.src |
|
module_code = module_code.lstrip('\n') |
|
module_code = f"class {self._get_name()}(torch.nn.Module):\n" + module_code |
|
module_code = _addindent(module_code, 4) |
|
|
|
submodule_code_list = [""] |
|
for submodule in self.children(): |
|
if isinstance(submodule, GraphModule): |
|
submodule_code_list.append(submodule.__nested_code()) |
|
submodule_code = "\n".join(submodule_code_list) |
|
submodule_code = _addindent(submodule_code, 4) |
|
|
|
print(module_code + submodule_code) |
|
|
|
def __str__(self) -> str: |
|
orig_str = super().__str__() |
|
print_readable_reminder = "# To see more debug info, please use `graph_module.print_readable()`" |
|
return '\n'.join([orig_str, self._code, print_readable_reminder]) |
|
|
|
def _replicate_for_data_parallel(self): |
|
new_gm = self.__copy__() |
|
new_gm._is_replica = True |
|
return new_gm |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|