|
import torch |
|
from numbers import Number |
|
from torch.distributions import constraints |
|
from torch.distributions.distribution import Distribution |
|
from torch.distributions.transformed_distribution import TransformedDistribution |
|
from torch.distributions.transforms import SigmoidTransform |
|
from torch.distributions.utils import broadcast_all, probs_to_logits, logits_to_probs, lazy_property, clamp_probs |
|
|
|
__all__ = ['LogitRelaxedBernoulli', 'RelaxedBernoulli'] |
|
|
|
class LogitRelaxedBernoulli(Distribution): |
|
r""" |
|
Creates a LogitRelaxedBernoulli distribution parameterized by :attr:`probs` |
|
or :attr:`logits` (but not both), which is the logit of a RelaxedBernoulli |
|
distribution. |
|
|
|
Samples are logits of values in (0, 1). See [1] for more details. |
|
|
|
Args: |
|
temperature (Tensor): relaxation temperature |
|
probs (Number, Tensor): the probability of sampling `1` |
|
logits (Number, Tensor): the log-odds of sampling `1` |
|
|
|
[1] The Concrete Distribution: A Continuous Relaxation of Discrete Random |
|
Variables (Maddison et al, 2017) |
|
|
|
[2] Categorical Reparametrization with Gumbel-Softmax |
|
(Jang et al, 2017) |
|
""" |
|
arg_constraints = {'probs': constraints.unit_interval, |
|
'logits': constraints.real} |
|
support = constraints.real |
|
|
|
def __init__(self, temperature, probs=None, logits=None, validate_args=None): |
|
self.temperature = temperature |
|
if (probs is None) == (logits is None): |
|
raise ValueError("Either `probs` or `logits` must be specified, but not both.") |
|
if probs is not None: |
|
is_scalar = isinstance(probs, Number) |
|
self.probs, = broadcast_all(probs) |
|
else: |
|
is_scalar = isinstance(logits, Number) |
|
self.logits, = broadcast_all(logits) |
|
self._param = self.probs if probs is not None else self.logits |
|
if is_scalar: |
|
batch_shape = torch.Size() |
|
else: |
|
batch_shape = self._param.size() |
|
super(LogitRelaxedBernoulli, self).__init__(batch_shape, validate_args=validate_args) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(LogitRelaxedBernoulli, _instance) |
|
batch_shape = torch.Size(batch_shape) |
|
new.temperature = self.temperature |
|
if 'probs' in self.__dict__: |
|
new.probs = self.probs.expand(batch_shape) |
|
new._param = new.probs |
|
if 'logits' in self.__dict__: |
|
new.logits = self.logits.expand(batch_shape) |
|
new._param = new.logits |
|
super(LogitRelaxedBernoulli, new).__init__(batch_shape, validate_args=False) |
|
new._validate_args = self._validate_args |
|
return new |
|
|
|
def _new(self, *args, **kwargs): |
|
return self._param.new(*args, **kwargs) |
|
|
|
@lazy_property |
|
def logits(self): |
|
return probs_to_logits(self.probs, is_binary=True) |
|
|
|
@lazy_property |
|
def probs(self): |
|
return logits_to_probs(self.logits, is_binary=True) |
|
|
|
@property |
|
def param_shape(self): |
|
return self._param.size() |
|
|
|
def rsample(self, sample_shape=torch.Size()): |
|
shape = self._extended_shape(sample_shape) |
|
probs = clamp_probs(self.probs.expand(shape)) |
|
uniforms = clamp_probs(torch.rand(shape, dtype=probs.dtype, device=probs.device)) |
|
return (uniforms.log() - (-uniforms).log1p() + probs.log() - (-probs).log1p()) / self.temperature |
|
|
|
def log_prob(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
logits, value = broadcast_all(self.logits, value) |
|
diff = logits - value.mul(self.temperature) |
|
return self.temperature.log() + diff - 2 * diff.exp().log1p() |
|
|
|
|
|
class RelaxedBernoulli(TransformedDistribution): |
|
r""" |
|
Creates a RelaxedBernoulli distribution, parametrized by |
|
:attr:`temperature`, and either :attr:`probs` or :attr:`logits` |
|
(but not both). This is a relaxed version of the `Bernoulli` distribution, |
|
so the values are in (0, 1), and has reparametrizable samples. |
|
|
|
Example:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterinistic") |
|
>>> m = RelaxedBernoulli(torch.tensor([2.2]), |
|
... torch.tensor([0.1, 0.2, 0.3, 0.99])) |
|
>>> m.sample() |
|
tensor([ 0.2951, 0.3442, 0.8918, 0.9021]) |
|
|
|
Args: |
|
temperature (Tensor): relaxation temperature |
|
probs (Number, Tensor): the probability of sampling `1` |
|
logits (Number, Tensor): the log-odds of sampling `1` |
|
""" |
|
arg_constraints = {'probs': constraints.unit_interval, |
|
'logits': constraints.real} |
|
support = constraints.unit_interval |
|
has_rsample = True |
|
|
|
def __init__(self, temperature, probs=None, logits=None, validate_args=None): |
|
base_dist = LogitRelaxedBernoulli(temperature, probs, logits) |
|
super(RelaxedBernoulli, self).__init__(base_dist, |
|
SigmoidTransform(), |
|
validate_args=validate_args) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(RelaxedBernoulli, _instance) |
|
return super(RelaxedBernoulli, self).expand(batch_shape, _instance=new) |
|
|
|
@property |
|
def temperature(self): |
|
return self.base_dist.temperature |
|
|
|
@property |
|
def logits(self): |
|
return self.base_dist.logits |
|
|
|
@property |
|
def probs(self): |
|
return self.base_dist.probs |
|
|