|
import math |
|
from numbers import Real |
|
from numbers import Number |
|
|
|
import torch |
|
from torch.distributions import constraints |
|
from torch.distributions.exp_family import ExponentialFamily |
|
from torch.distributions.utils import _standard_normal, broadcast_all |
|
|
|
__all__ = ['Normal'] |
|
|
|
class Normal(ExponentialFamily): |
|
r""" |
|
Creates a normal (also called Gaussian) distribution parameterized by |
|
:attr:`loc` and :attr:`scale`. |
|
|
|
Example:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterinistic") |
|
>>> m = Normal(torch.tensor([0.0]), torch.tensor([1.0])) |
|
>>> m.sample() # normally distributed with loc=0 and scale=1 |
|
tensor([ 0.1046]) |
|
|
|
Args: |
|
loc (float or Tensor): mean of the distribution (often referred to as mu) |
|
scale (float or Tensor): standard deviation of the distribution |
|
(often referred to as sigma) |
|
""" |
|
arg_constraints = {'loc': constraints.real, 'scale': constraints.positive} |
|
support = constraints.real |
|
has_rsample = True |
|
_mean_carrier_measure = 0 |
|
|
|
@property |
|
def mean(self): |
|
return self.loc |
|
|
|
@property |
|
def mode(self): |
|
return self.loc |
|
|
|
@property |
|
def stddev(self): |
|
return self.scale |
|
|
|
@property |
|
def variance(self): |
|
return self.stddev.pow(2) |
|
|
|
def __init__(self, loc, scale, validate_args=None): |
|
self.loc, self.scale = broadcast_all(loc, scale) |
|
if isinstance(loc, Number) and isinstance(scale, Number): |
|
batch_shape = torch.Size() |
|
else: |
|
batch_shape = self.loc.size() |
|
super(Normal, self).__init__(batch_shape, validate_args=validate_args) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(Normal, _instance) |
|
batch_shape = torch.Size(batch_shape) |
|
new.loc = self.loc.expand(batch_shape) |
|
new.scale = self.scale.expand(batch_shape) |
|
super(Normal, new).__init__(batch_shape, validate_args=False) |
|
new._validate_args = self._validate_args |
|
return new |
|
|
|
def sample(self, sample_shape=torch.Size()): |
|
shape = self._extended_shape(sample_shape) |
|
with torch.no_grad(): |
|
return torch.normal(self.loc.expand(shape), self.scale.expand(shape)) |
|
|
|
def rsample(self, sample_shape=torch.Size()): |
|
shape = self._extended_shape(sample_shape) |
|
eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device) |
|
return self.loc + eps * self.scale |
|
|
|
def log_prob(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
|
|
var = (self.scale ** 2) |
|
log_scale = math.log(self.scale) if isinstance(self.scale, Real) else self.scale.log() |
|
return -((value - self.loc) ** 2) / (2 * var) - log_scale - math.log(math.sqrt(2 * math.pi)) |
|
|
|
def cdf(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
return 0.5 * (1 + torch.erf((value - self.loc) * self.scale.reciprocal() / math.sqrt(2))) |
|
|
|
def icdf(self, value): |
|
return self.loc + self.scale * torch.erfinv(2 * value - 1) * math.sqrt(2) |
|
|
|
def entropy(self): |
|
return 0.5 + 0.5 * math.log(2 * math.pi) + torch.log(self.scale) |
|
|
|
@property |
|
def _natural_params(self): |
|
return (self.loc / self.scale.pow(2), -0.5 * self.scale.pow(2).reciprocal()) |
|
|
|
def _log_normalizer(self, x, y): |
|
return -0.25 * x.pow(2) / y + 0.5 * torch.log(-math.pi / y) |
|
|