|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Pipe interface.""" |
|
from collections import OrderedDict |
|
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Union, Sequence, Tuple, cast |
|
|
|
import torch |
|
from torch import Tensor, nn |
|
from torch.distributed.rpc import RRef |
|
import torch.autograd |
|
import torch.cuda |
|
|
|
from . import microbatch |
|
from .batchnorm import DeferredBatchNorm |
|
from .pipeline import Pipeline |
|
from .skip.layout import inspect_skip_layout |
|
from .skip.skippable import verify_skippables |
|
from .stream import AbstractStream, new_stream |
|
|
|
__all__ = ["Pipe"] |
|
|
|
|
|
Device = Union[torch.device, int, str] |
|
Devices = Union[Iterable[Device], List[Device]] |
|
|
|
Tensors = Sequence[Tensor] |
|
TensorOrTensors = Union[Tensor, Tensors] |
|
|
|
if TYPE_CHECKING: |
|
|
|
Module = nn.Module[TensorOrTensors] |
|
NamedModules = OrderedDict[str, Module] |
|
else: |
|
Module = nn.Module |
|
NamedModules = OrderedDict |
|
|
|
|
|
def _recommend_auto_balance(message: str) -> str: |
|
"""Expands a message with recommendation to :mod:`torchpipe.balance`.""" |
|
return f"""{message} |
|
|
|
If your model is still under development, its optimal balance would change |
|
frequently. In this case, we highly recommend 'torch.distributed.pipeline.sync.balance' for |
|
naive automatic balancing: |
|
|
|
from torch.distributed.pipeline.sync import Pipe |
|
from torch.distributed.pipeline.sync.balance import balance_by_time |
|
|
|
partitions = torch.cuda.device_count() |
|
sample = torch.empty(...) |
|
balance = balance_by_time(partitions, model, sample) |
|
|
|
model = Pipe(model, balance, ...) |
|
""" |
|
|
|
|
|
def _verify_module(module: nn.Sequential) -> None: |
|
if not isinstance(module, nn.Sequential): |
|
raise TypeError("module must be nn.Sequential to be partitioned") |
|
|
|
named_children = list(module.named_children()) |
|
if len(named_children) != len(module): |
|
raise ValueError("module with duplicate children is not supported") |
|
|
|
|
|
def _verify_splitting( |
|
module: nn.Sequential, partitions: List[nn.Sequential], devices: List[torch.device] |
|
) -> None: |
|
num_parameters = len(list(module.parameters())) |
|
num_child_parameters = sum(len(list(child.parameters())) for child in module.children()) |
|
if num_parameters == num_child_parameters: |
|
return |
|
|
|
for i in range(len(partitions)): |
|
for j in range(i + 1, len(partitions)): |
|
parti = partitions[i] |
|
partj = partitions[j] |
|
if devices[i] == devices[j]: |
|
continue |
|
for p in parti.parameters(): |
|
for q in partj.parameters(): |
|
if p is q: |
|
raise ValueError("module with duplicate parameters on distinct devices is not supported") |
|
|
|
|
|
class BalanceError(ValueError): |
|
pass |
|
|
|
|
|
def _retrieve_device(module: nn.Module) -> torch.device: |
|
"""Validates all parameters in the Module have the same device and returns |
|
the appropriate device. |
|
|
|
Args: |
|
An ``nn.Module`` to process. |
|
|
|
Returns: |
|
``torch.Device`` for the entire module. |
|
|
|
Raises: |
|
ValueError: |
|
If devices for ``nn.Module`` parameters are not all same. |
|
""" |
|
|
|
device = None |
|
for parameter in module.parameters(): |
|
if device is None: |
|
device = parameter.device |
|
elif device != parameter.device: |
|
raise ValueError( |
|
'nn.Module: {}, should have all parameters on a single device,' |
|
' please use .to() to place the module on a single device'.format(module)) |
|
|
|
return device if device is not None else torch.device("cpu") |
|
|
|
|
|
class PipeSequential(nn.Sequential): |
|
""" |
|
Pipe variant of ``nn.Sequential`` which supports multiple inputs. |
|
""" |
|
|
|
def forward(self, *inputs): |
|
for module in self: |
|
if isinstance(inputs, Tuple): |
|
inputs = module(*inputs) |
|
else: |
|
|
|
inputs = module(inputs) |
|
return inputs |
|
|
|
|
|
class WithDevice(nn.Module): |
|
""" |
|
Wraps an ``nn.Module`` which is part of ``nn.Sequential`` passed into :class:`Pipe` |
|
that overrides the device for that module. In cases where :class:`Pipe` |
|
can't implicitly determine the device for the module and places it on CPU, |
|
this wrapper can be used to override the implicit behavior and explicitly |
|
specify which device a module should run on. |
|
|
|
The provided module is also moved to the given device via ``.to(device)`` |
|
by :class:`Pipe` |
|
|
|
Args: |
|
module(:class:`torch.nn.Module`): The module to be wrapped. |
|
device(:class:`torch.device`): The device to run the module on. |
|
|
|
Example:: |
|
>>> # xdoctest: +SKIP("distributed") |
|
>>> fc1 = nn.Linear(16, 8).cuda(0) |
|
>>> fc2 = nn.Linear(8, 4).cuda(1) |
|
>>> dropout = nn.Dropout() |
|
>>> |
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) |
|
>>> # Dropout does not have any parameters/buffers, but we want to |
|
>>> # run it on cuda:1 to avoid any GPU to CPU transfers. |
|
>>> model = nn.Sequential(fc1, fc2, WithDevice(dropout, 'cuda:1')) |
|
>>> # xdoctest: +SKIP("Needs RPC framework init") |
|
>>> model = Pipe(model, chunks=8) |
|
""" |
|
def __init__(self, module: nn.Module, device: torch.device): |
|
super(WithDevice, self).__init__() |
|
self._module = module |
|
self._device = torch.device(device) |
|
|
|
def forward(self, *args, **kwargs): |
|
return self._module(*args, **kwargs) |
|
|
|
@property |
|
def module(self): |
|
return self._module |
|
|
|
@property |
|
def device(self): |
|
return self._device |
|
|
|
|
|
def _assemble_partition(modules: List[nn.Module]): |
|
modules_list: List[nn.Module] = [] |
|
for module in modules: |
|
if isinstance(module, nn.Sequential): |
|
modules_list.extend(module.children()) |
|
else: |
|
modules_list.append(module) |
|
return PipeSequential(*modules_list) |
|
|
|
|
|
def _split_module(modules: nn.Sequential) -> Tuple[List[nn.Sequential], List[torch.device]]: |
|
partitions = [] |
|
devices = [] |
|
|
|
current_partition = [] |
|
current_device = None |
|
for name, module in modules.named_children(): |
|
if isinstance(module, WithDevice): |
|
|
|
device = module.device |
|
module = module.module |
|
module.to(device) |
|
else: |
|
device = _retrieve_device(module) |
|
if current_device is not None and (current_device != device or device.type == 'cpu'): |
|
partitions.append(_assemble_partition(current_partition)) |
|
devices.append(current_device) |
|
current_partition = [] |
|
current_device = device |
|
current_partition.append(module) |
|
|
|
if current_device is not None: |
|
partitions.append(_assemble_partition(current_partition)) |
|
devices.append(current_device) |
|
|
|
partitions = cast(List[nn.Sequential], nn.ModuleList(partitions)) |
|
|
|
return partitions, devices |
|
|
|
|
|
MOVING_DENIED = TypeError("denied to move parameters and buffers, " "because Pipe should manage device placement") |
|
|
|
|
|
class Pipe(Module): |
|
"""Wraps an arbitrary :class:`nn.Sequential <torch.nn.Sequential>` module |
|
to train on using synchronous pipeline parallelism. If the module requires |
|
lots of memory and doesn't fit on a single GPU, pipeline parallelism is a |
|
useful technique to employ for training. |
|
|
|
The implementation is based on the torchgpipe_ paper. |
|
|
|
.. _torchgpipe: https://arxiv.org/abs/2004.09910 |
|
|
|
Pipe combines pipeline parallelism with checkpointing to reduce peak |
|
memory required to train while minimizing device under-utilization. |
|
|
|
You should place all the modules on the appropriate devices and wrap them |
|
into an :class:`nn.Sequential <torch.nn.Sequential>` module defining the |
|
desired order of execution. If a module does not contain any |
|
parameters/buffers, it is assumed this module should be executed on CPU |
|
and appropriate input tensors to the module are moved to CPU before |
|
execution. This behavior can be overridden by the :class:`WithDevice` |
|
wrapper which can be used to explicitly specify which device a module |
|
should run on. |
|
|
|
Args: |
|
module (:class:`nn.Sequential <torch.nn.Sequential>`): |
|
sequential module to be parallelized using pipelining. Each module |
|
in the sequence has to have all of its parameters on a single |
|
device. Each module in the sequence has to either be an nn.Module |
|
or :class:`nn.Sequential <torch.nn.Sequential>` (to combine multiple |
|
sequential modules on a single device) |
|
chunks (int): |
|
number of micro-batches (default: ``1``) |
|
checkpoint (str): |
|
when to enable checkpointing, one of ``'always'``, |
|
``'except_last'``, or ``'never'`` (default: ``'except_last'``). |
|
``'never'`` disables checkpointing completely, ``'except_last'`` |
|
enables checkpointing for all micro-batches except the last one |
|
and ``'always'`` enables checkpointing for all micro-batches. |
|
deferred_batch_norm (bool): |
|
whether to use deferred ``BatchNorm`` moving statistics (default: |
|
:data:`False`). If set to :data:`True`, we track statistics across |
|
multiple micro-batches to update the running statistics per |
|
mini-batch. |
|
|
|
Raises: |
|
TypeError: |
|
the module is not a :class:`nn.Sequential <torch.nn.Sequential>`. |
|
ValueError: |
|
invalid arguments |
|
|
|
Example:: |
|
Pipeline of two FC layers across GPUs 0 and 1. |
|
|
|
>>> # Need to initialize RPC framework first. |
|
>>> # xdoctest: +SKIP |
|
>>> os.environ['MASTER_ADDR'] = 'localhost' |
|
>>> os.environ['MASTER_PORT'] = '29500' |
|
>>> torch.distributed.rpc.init_rpc('worker', rank=0, world_size=1) |
|
>>> |
|
>>> # Build pipe. |
|
>>> fc1 = nn.Linear(16, 8).cuda(0) |
|
>>> fc2 = nn.Linear(8, 4).cuda(1) |
|
>>> model = nn.Sequential(fc1, fc2) |
|
>>> model = Pipe(model, chunks=8) |
|
>>> input = torch.rand(16, 16).cuda(0) |
|
>>> output_rref = model(input) |
|
|
|
.. note:: |
|
You can wrap a :class:`Pipe` model with |
|
:class:`torch.nn.parallel.DistributedDataParallel` only when the |
|
checkpoint parameter of :class:`Pipe` is ``'never'``. |
|
|
|
.. note:: |
|
:class:`Pipe` only supports intra-node pipelining currently, but |
|
will be expanded to support inter-node pipelining in the future. |
|
The forward function returns an :class:`~torch.distributed.rpc.RRef` |
|
to allow for inter-node pipelining in the future, where the output |
|
might be on a remote host. For intra-node pipelinining you can use |
|
:meth:`~torch.distributed.rpc.RRef.local_value` to retrieve the |
|
output locally. |
|
|
|
.. warning:: |
|
:class:`Pipe` is experimental and subject to change. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
module: nn.Sequential, |
|
chunks: int = 1, |
|
checkpoint: str = "except_last", |
|
deferred_batch_norm: bool = False, |
|
) -> None: |
|
super().__init__() |
|
|
|
|
|
if not torch.distributed.rpc._is_current_rpc_agent_set(): |
|
raise RuntimeError( |
|
'Please initialize RPC framework for Pipe using ' |
|
'torch.distributed.rpc.init_rpc') |
|
|
|
chunks = int(chunks) |
|
checkpoint = str(checkpoint) |
|
|
|
if chunks <= 0: |
|
raise ValueError("number of chunks must be positive integer") |
|
if checkpoint not in ["always", "except_last", "never"]: |
|
raise ValueError("checkpoint is not one of 'always', 'except_last', or 'never'") |
|
|
|
_verify_module(module) |
|
|
|
|
|
|
|
verify_skippables(module) |
|
|
|
self.chunks = chunks |
|
self.checkpoint = checkpoint |
|
|
|
if deferred_batch_norm: |
|
module = DeferredBatchNorm.convert_deferred_batch_norm(module, chunks) |
|
|
|
self.partitions, self.devices = _split_module(module) |
|
_verify_splitting(module, self.partitions, self.devices) |
|
|
|
self._copy_streams: List[List[AbstractStream]] = [] |
|
self._skip_layout = inspect_skip_layout(self.partitions) |
|
|
|
|
|
copy_streams = self._ensure_copy_streams() |
|
|
|
|
|
checkpoint_stop = {"always": self.chunks, "except_last": self.chunks - 1, "never": 0}[self.checkpoint] |
|
|
|
self.pipeline = Pipeline(self.partitions, self.devices, copy_streams, self._skip_layout, checkpoint_stop) |
|
|
|
def __len__(self) -> int: |
|
"""Counts the length of the underlying sequential module.""" |
|
return sum(len(p) for p in self.partitions) |
|
|
|
def __getitem__(self, index: int) -> nn.Module: |
|
"""Gets a layer in the underlying sequential module.""" |
|
partitions = self.partitions |
|
if index < 0: |
|
partitions = partitions[::-1] |
|
|
|
for partition in partitions: |
|
try: |
|
return partition[index] |
|
except IndexError: |
|
pass |
|
|
|
shift = len(partition) |
|
|
|
if index < 0: |
|
index += shift |
|
else: |
|
index -= shift |
|
|
|
raise IndexError |
|
|
|
def __iter__(self) -> Iterable[nn.Module]: |
|
"""Iterates over children of the underlying sequential module.""" |
|
for partition in self.partitions: |
|
yield from partition |
|
|
|
|
|
|
|
def cuda(self, device: Optional[Device] = None) -> "Pipe": |
|
raise MOVING_DENIED |
|
|
|
def cpu(self) -> "Pipe": |
|
raise MOVING_DENIED |
|
|
|
def to(self, *args: Any, **kwargs: Any) -> "Pipe": |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if "device" in kwargs or "tensor" in kwargs: |
|
raise MOVING_DENIED |
|
|
|
if args: |
|
if isinstance(args[0], (torch.device, int, str)): |
|
raise MOVING_DENIED |
|
if torch.is_tensor(args[0]): |
|
raise MOVING_DENIED |
|
|
|
return super().to(*args, **kwargs) |
|
|
|
def _ensure_copy_streams(self) -> List[List[AbstractStream]]: |
|
"""Ensures that :class:`Pipe` caches CUDA streams for copy. |
|
|
|
It's worth to cache CUDA streams although PyTorch already manages a |
|
pool of pre-allocated CUDA streams, because it may reduce GPU memory |
|
fragementation when the number of micro-batches is small. |
|
|
|
""" |
|
if not self._copy_streams: |
|
for device in self.devices: |
|
self._copy_streams.append([new_stream(device) for _ in range(self.chunks)]) |
|
|
|
return self._copy_streams |
|
|
|
def forward(self, *inputs) -> RRef: |
|
""" |
|
Processes a single input mini-batch through the pipe and returns an |
|
:class:`~torch.distributed.rpc.RRef` pointing to the output. |
|
:class:`Pipe` is a fairly transparent module wrapper. It doesn't |
|
modify the input and output signature of the underlying module. But |
|
there's type restriction. Input and output have to contain at least one |
|
tensor. This restriction is applied at partition boundaries too. |
|
|
|
The sequence of inputs are fed into the first stage of the pipeline as |
|
``*inputs``. As a result the positional args for this function should |
|
match the positional args for the first stage of the pipeline. The same |
|
condition applies for output of one stage of the pipeline which is the |
|
input for the next stage. |
|
|
|
The input tensor is split into multiple micro-batches based on the |
|
``chunks`` parameter used to initialize :class:`Pipe`. The batch size |
|
is assumed to be the first dimension of the tensor and if the batch |
|
size is less than ``chunks``, the number of micro-batches is equal to |
|
the batch size. |
|
|
|
Only tensors are split into multiple micro-batches, non-Tensor inputs |
|
are just replicated as-is in each micro-batch. For non-Tensor outputs |
|
in the last stage of the pipeline, they are aggregated as a ``List`` |
|
and returned the user. For example, if you have 2 micro-batches |
|
returning the integer 5, the user would receive the consolidated |
|
output of `[5, 5]` |
|
|
|
All the input tensors need to be on the same device as the first |
|
partition of the pipeline. |
|
|
|
If a tensor is wrapped with the :class:`NoChunk` wrapper, the tensor |
|
is not split across micro-batches and is replicated as-is similar to |
|
non-tensors. |
|
|
|
Args: |
|
inputs: input mini-batch |
|
|
|
Returns: |
|
:class:`~torch.distributed.rpc.RRef` to the output of the mini-batch |
|
|
|
Raises: |
|
TypeError: input doesn't contain at least one tensor |
|
|
|
""" |
|
first_partition_device = self.devices[0] if len(self.devices) != 0 else torch.device("cpu") |
|
microbatch.check(first_partition_device, *inputs) |
|
|
|
if not self.devices: |
|
|
|
return RRef(*inputs) |
|
|
|
|
|
batches = microbatch.scatter(*inputs, chunks=self.chunks) |
|
|
|
|
|
self.pipeline.run(batches) |
|
|
|
|
|
output = microbatch.gather(batches) |
|
return RRef(output) |
|
|