|
r""" |
|
This module introduces CUDA Sanitizer, a tool for detecting synchronization errors |
|
between kernels ran on different streams. It stores information on accesses to tensors |
|
to determine if they are synchronized or not. When enabled in a python program and a |
|
possible data race is detected, a detailed warning will be printed and the program |
|
will exit. |
|
|
|
It can be enabled either by importing this module and calling |
|
:func:`enable_cuda_sanitizer()` or by exporting the ``TORCH_CUDA_SANITIZER`` |
|
environment variable. |
|
""" |
|
|
|
import enum |
|
import functools |
|
import io |
|
import logging |
|
import sys |
|
import textwrap |
|
import traceback |
|
from dataclasses import dataclass, field |
|
from typing import Any, Dict, Iterator, List, Optional, Set, Tuple, TypeVar |
|
|
|
import torch |
|
import torch.utils._cuda_trace as cuda_trace |
|
from torch.utils._python_dispatch import TorchDispatchMode |
|
from torch.utils._pytree import tree_map |
|
|
|
|
|
DEFAULT_STREAM_ID = 0 |
|
|
|
TK = TypeVar("TK") |
|
TVa = TypeVar("TVa") |
|
TVb = TypeVar("TVb") |
|
|
|
DataPtr = int |
|
StreamId = int |
|
EventId = int |
|
SeqNum = int |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class AccessType(enum.Enum): |
|
READ = enum.auto() |
|
WRITE = enum.auto() |
|
|
|
def __str__(self): |
|
return "reading from" if self is AccessType.READ else "writing to" |
|
|
|
|
|
@dataclass |
|
class Access: |
|
r"""Stores information about a single access to a tensor by a kernel. |
|
|
|
Args: |
|
type: either AccessType.READ or AccessType.Write. |
|
seq_num: the sequential number of the kernel performing the access. |
|
stream: the stream id of the stream executing the kernel. |
|
operator: the schema of the launched kernel, which lists the |
|
arguments and return type. |
|
aliases: the arguments in the schema this access corresponds to. |
|
is_output: Whether the tensor was an output of the kernel. |
|
stack_trace: the stack summary object captured during access. |
|
""" |
|
type: AccessType |
|
seq_num: SeqNum |
|
stream: StreamId |
|
operator: str |
|
aliases: List[str] |
|
is_output: bool |
|
stack_trace: traceback.StackSummary |
|
|
|
|
|
class SynchronizationError(Exception): |
|
"""Base class for errors detected by CUDA Sanitizer.""" |
|
|
|
pass |
|
|
|
|
|
class UnsynchronizedAccessError(SynchronizationError): |
|
"""Stores information about two unsynchronized accesses to one data pointer.""" |
|
|
|
def __init__( |
|
self, |
|
data_ptr: DataPtr, |
|
allocation_stack_trace: Optional[traceback.StackSummary], |
|
current_access: Access, |
|
previous_access: Access, |
|
): |
|
self.data_ptr = data_ptr |
|
self.allocation_stack_trace = allocation_stack_trace |
|
self.current_access = current_access |
|
self.previous_access = previous_access |
|
|
|
def __str__(self): |
|
def format_access(access: Access): |
|
message.write(f"{access.operator}\n{access.type}") |
|
if access.aliases: |
|
message.write(" argument(s) " + ", ".join(access.aliases)) |
|
if access.is_output: |
|
message.write(", and to") |
|
if access.is_output: |
|
message.write(" the output") |
|
message.write( |
|
f"\nWith stack trace:\n{''.join(access.stack_trace.format())}\n" |
|
) |
|
|
|
with io.StringIO() as message: |
|
message.write( |
|
textwrap.dedent( |
|
f"""\ |
|
============================ |
|
CSAN detected a possible data race on tensor with data pointer {self.data_ptr} |
|
Access by stream {self.current_access.stream} during kernel: |
|
""" |
|
) |
|
) |
|
format_access(self.current_access) |
|
|
|
message.write( |
|
f"Previous access by stream {self.previous_access.stream} during kernel:\n" |
|
) |
|
format_access(self.previous_access) |
|
|
|
if self.allocation_stack_trace: |
|
message.write( |
|
"Tensor was allocated with stack trace:\n" |
|
f"{''.join(self.allocation_stack_trace.format())}" |
|
) |
|
else: |
|
message.write("Trace for tensor allocation not found.") |
|
return message.getvalue() |
|
|
|
|
|
class CUDASanitizerErrors(Exception): |
|
"""Wrapper class for errors reported by CUDA Sanitizer.""" |
|
|
|
def __init__(self, errors: List[SynchronizationError]): |
|
self.errors = errors |
|
|
|
def __str__(self): |
|
return f"detected {len(self.errors)} errors" |
|
|
|
|
|
def format_log_message(message: str) -> str: |
|
return " ".join(line.strip() for line in message.strip().splitlines()) |
|
|
|
|
|
@dataclass |
|
class TensorInfo: |
|
r"""Stores information about a single tensor and recent accesses to it. |
|
|
|
Args: |
|
allocation_stack_trace: the stack summary object captured during tensor |
|
allocation. Can be ``None`` if the allocation wasn't caught by CSAN. |
|
reads: list of read accesses to the tensor that were performed since |
|
the last write. |
|
write: the last write access to the tensor. |
|
""" |
|
allocation_stack_trace: Optional[traceback.StackSummary] |
|
reads: List[Access] = field(default_factory=list) |
|
write: Optional[Access] = None |
|
|
|
|
|
class _TensorsAccessed: |
|
def __init__(self): |
|
self.accesses: Dict[DataPtr, TensorInfo] = {} |
|
|
|
def ensure_tensor_exists(self, data_ptr: DataPtr) -> None: |
|
if data_ptr not in self.accesses: |
|
logger.info( |
|
format_log_message( |
|
f""" |
|
Found tensor with pointer: {data_ptr}, but no matching tensor |
|
allocation in the trace. Backfilling the trace now. |
|
Perhaps the sanitizer was enabled after some torch operations? |
|
""" |
|
) |
|
) |
|
self.create_tensor(data_ptr, None) |
|
|
|
def ensure_tensor_does_not_exist(self, data_ptr: DataPtr) -> None: |
|
if data_ptr in self.accesses: |
|
logger.info( |
|
format_log_message( |
|
f""" |
|
Found duplicate tensor allocation in the trace for tensor with |
|
pointer: {data_ptr}. Assuming the trace for tensor deallocation |
|
wasn't caught and backfilling it now. |
|
Perhaps the sanitizer was enabled after some torch operations? |
|
""" |
|
) |
|
) |
|
self.delete_tensor(data_ptr) |
|
|
|
def create_tensor( |
|
self, data_ptr: DataPtr, stack_trace: Optional[traceback.StackSummary] |
|
) -> None: |
|
self.accesses[data_ptr] = TensorInfo(stack_trace) |
|
|
|
def delete_tensor(self, data_ptr: DataPtr) -> None: |
|
del self.accesses[data_ptr] |
|
|
|
def were_there_reads_since_last_write(self, data_ptr: DataPtr) -> bool: |
|
return True if self.accesses[data_ptr].reads else False |
|
|
|
def get_allocation_stack_trace( |
|
self, data_ptr: DataPtr |
|
) -> Optional[traceback.StackSummary]: |
|
return self.accesses[data_ptr].allocation_stack_trace |
|
|
|
def get_write(self, data_ptr: DataPtr) -> Optional[Access]: |
|
return self.accesses[data_ptr].write |
|
|
|
def get_reads(self, data_ptr: DataPtr) -> List[Access]: |
|
return self.accesses[data_ptr].reads |
|
|
|
def add_read(self, data_ptr: DataPtr, access: Access) -> None: |
|
self.accesses[data_ptr].reads.append(access) |
|
|
|
def set_write(self, data_ptr: DataPtr, access: Access) -> None: |
|
self.accesses[data_ptr].write = access |
|
self.accesses[data_ptr].reads = [] |
|
|
|
|
|
class StreamSynchronizations: |
|
def __init__(self): |
|
self.current_sync_states: Dict[StreamId, Dict[StreamId, SeqNum]] = {} |
|
self.recorded_sync_states: Dict[EventId, Dict[StreamId, SeqNum]] = {} |
|
self.host_sync_state: Dict[StreamId, SeqNum] = {} |
|
self.create_stream(DEFAULT_STREAM_ID) |
|
|
|
def _ensure_stream_exists(self, stream: StreamId) -> None: |
|
if stream not in self.current_sync_states: |
|
logger.info( |
|
format_log_message( |
|
f""" |
|
Found Stream with id: {stream}, but no matching stream |
|
creation in the trace. Backfilling the trace now. |
|
Perhaps the sanitizer was enabled after some torch operations? |
|
""" |
|
) |
|
) |
|
self.create_stream(stream) |
|
|
|
def _ensure_event_exists(self, event: EventId) -> None: |
|
if event not in self.recorded_sync_states: |
|
logger.info( |
|
format_log_message( |
|
f""" |
|
Found Event with id: {event}, but no matching event |
|
creation in the trace. Backfilling the trace now. |
|
Perhaps the sanitizer was enabled after some torch operations? |
|
""" |
|
) |
|
) |
|
self.create_event(event) |
|
|
|
def _ensure_event_does_not_exist(self, event: EventId) -> None: |
|
if event in self.recorded_sync_states: |
|
logger.info( |
|
format_log_message( |
|
f""" |
|
Found duplicate event creation in the trace for event with |
|
id: {event}. Assuming the trace for event deletion wasn't caught |
|
and backfilling it now. |
|
Perhaps the sanitizer was enabled after some torch operations? |
|
""" |
|
) |
|
) |
|
self.delete_event(event) |
|
|
|
def create_stream(self, stream: StreamId) -> None: |
|
if stream in self.current_sync_states: |
|
logger.info( |
|
format_log_message( |
|
f""" |
|
Found duplicate Stream creation in the trace for Stream with |
|
id: {stream}. PyTorch Streams are only created once, so this |
|
trace entry is ignored. |
|
""" |
|
) |
|
) |
|
else: |
|
self.host_sync_state[stream] = 0 |
|
self.current_sync_states[stream] = self.host_sync_state.copy() |
|
|
|
def create_event(self, event: EventId) -> None: |
|
self._ensure_event_does_not_exist(event) |
|
self.recorded_sync_states[event] = {} |
|
|
|
def delete_event(self, event: EventId) -> None: |
|
self._ensure_event_exists(event) |
|
del self.recorded_sync_states[event] |
|
|
|
def update_seq_num(self, stream: StreamId, seq_num: SeqNum) -> None: |
|
self._ensure_stream_exists(stream) |
|
self.current_sync_states[stream][stream] = seq_num |
|
|
|
def record_state(self, event: EventId, stream: StreamId) -> None: |
|
self._ensure_event_exists(event) |
|
self._ensure_stream_exists(stream) |
|
self.recorded_sync_states[event] = self.current_sync_states[stream].copy() |
|
|
|
def _state_wait_for_other( |
|
self, state: Dict[StreamId, SeqNum], other: Dict[StreamId, SeqNum] |
|
) -> None: |
|
for stream, seq_num in other.items(): |
|
state[stream] = max(state.get(stream, -1), seq_num) |
|
|
|
def stream_wait_for_event(self, stream: StreamId, event: EventId) -> None: |
|
self._ensure_stream_exists(stream) |
|
self._ensure_event_exists(event) |
|
self._state_wait_for_other( |
|
self.current_sync_states[stream], self.recorded_sync_states[event] |
|
) |
|
|
|
def all_streams_wait_for_event(self, event: EventId) -> None: |
|
self._ensure_event_exists(event) |
|
for stream in self.current_sync_states.keys(): |
|
self.stream_wait_for_event(stream, event) |
|
|
|
self._state_wait_for_other( |
|
self.host_sync_state, self.recorded_sync_states[event] |
|
) |
|
|
|
def all_streams_wait_for_stream(self, stream: StreamId) -> None: |
|
self._ensure_stream_exists(stream) |
|
for state in self.current_sync_states.values(): |
|
self._state_wait_for_other(state, self.current_sync_states[stream]) |
|
|
|
self._state_wait_for_other( |
|
self.host_sync_state, self.current_sync_states[stream] |
|
) |
|
|
|
def sync_all_streams(self) -> None: |
|
for stream, state in self.current_sync_states.items(): |
|
self.host_sync_state[stream] = state[stream] |
|
|
|
for state in self.current_sync_states.values(): |
|
self._state_wait_for_other(state, self.host_sync_state) |
|
|
|
def is_ordered_after( |
|
self, current_stream: StreamId, seq_num: SeqNum, other_stream: StreamId |
|
) -> bool: |
|
self._ensure_stream_exists(current_stream) |
|
self._ensure_stream_exists(other_stream) |
|
return seq_num <= self.current_sync_states[current_stream].get(other_stream, -1) |
|
|
|
|
|
class EventHandler: |
|
"""Analyzes CSAN trace for synchronization errors. |
|
|
|
Stores information on each stream's synchronizations with other streams as well |
|
as tensor accesses to determine whether a given kernel launch might cause a |
|
data race. |
|
""" |
|
|
|
def __init__(self): |
|
self.tensors_accessed = _TensorsAccessed() |
|
self.syncs = StreamSynchronizations() |
|
self.seq_num: SeqNum = 0 |
|
|
|
def _handle_kernel_launch( |
|
self, |
|
stream: StreamId, |
|
read_only: Set[DataPtr], |
|
read_write: Set[DataPtr], |
|
outputs: Set[DataPtr], |
|
operator: str, |
|
tensor_aliases: Dict[int, List[str]], |
|
) -> List[SynchronizationError]: |
|
def check_conflict( |
|
data_ptr: DataPtr, current_access: Access, previous_access: Optional[Access] |
|
) -> None: |
|
if previous_access is None: |
|
return |
|
if not self.syncs.is_ordered_after( |
|
current_access.stream, previous_access.seq_num, previous_access.stream |
|
): |
|
error_list.append( |
|
UnsynchronizedAccessError( |
|
data_ptr, |
|
self.tensors_accessed.get_allocation_stack_trace(data_ptr), |
|
current_access, |
|
previous_access, |
|
) |
|
) |
|
|
|
error_list: List[SynchronizationError] = [] |
|
self.seq_num += 1 |
|
self.syncs.update_seq_num(stream, self.seq_num) |
|
stack_trace = traceback.StackSummary.extract( |
|
traceback.walk_stack(None), lookup_lines=False |
|
) |
|
|
|
|
|
stack_trace.reverse() |
|
|
|
for data_ptr in read_only: |
|
self.tensors_accessed.ensure_tensor_exists(data_ptr) |
|
current_access = Access( |
|
AccessType.READ, |
|
self.seq_num, |
|
stream, |
|
operator, |
|
tensor_aliases[data_ptr], |
|
data_ptr in outputs, |
|
stack_trace, |
|
) |
|
check_conflict( |
|
data_ptr, current_access, self.tensors_accessed.get_write(data_ptr) |
|
) |
|
self.tensors_accessed.add_read(data_ptr, current_access) |
|
|
|
for data_ptr in read_write: |
|
self.tensors_accessed.ensure_tensor_exists(data_ptr) |
|
current_access = Access( |
|
AccessType.WRITE, |
|
self.seq_num, |
|
stream, |
|
operator, |
|
tensor_aliases[data_ptr], |
|
data_ptr in outputs, |
|
stack_trace, |
|
) |
|
if self.tensors_accessed.were_there_reads_since_last_write(data_ptr): |
|
for previous_access in self.tensors_accessed.get_reads(data_ptr): |
|
check_conflict(data_ptr, current_access, previous_access) |
|
else: |
|
check_conflict( |
|
data_ptr, current_access, self.tensors_accessed.get_write(data_ptr) |
|
) |
|
self.tensors_accessed.set_write(data_ptr, current_access) |
|
|
|
return error_list |
|
|
|
def _handle_event_creation(self, event: EventId) -> None: |
|
self.syncs.create_event(event) |
|
|
|
def _handle_event_deletion(self, event: EventId) -> None: |
|
self.syncs.delete_event(event) |
|
|
|
def _handle_event_record(self, event: EventId, stream: StreamId) -> None: |
|
self.syncs.record_state(event, stream) |
|
|
|
def _handle_event_wait(self, event: EventId, stream: StreamId) -> None: |
|
self.syncs.stream_wait_for_event(stream, event) |
|
|
|
def _handle_memory_allocation(self, data_ptr: DataPtr) -> None: |
|
self.tensors_accessed.ensure_tensor_does_not_exist(data_ptr) |
|
stack_trace = traceback.StackSummary.extract( |
|
traceback.walk_stack(None), lookup_lines=False |
|
) |
|
|
|
|
|
stack_trace.reverse() |
|
self.tensors_accessed.create_tensor( |
|
data_ptr, |
|
stack_trace, |
|
) |
|
|
|
def _handle_memory_deallocation(self, data_ptr: DataPtr) -> None: |
|
self.tensors_accessed.ensure_tensor_exists(data_ptr) |
|
self.tensors_accessed.delete_tensor(data_ptr) |
|
|
|
def _handle_stream_creation(self, stream: StreamId) -> None: |
|
self.syncs.create_stream(stream) |
|
|
|
def _handle_device_synchronization(self) -> None: |
|
self.syncs.sync_all_streams() |
|
|
|
def _handle_stream_synchronization(self, stream: StreamId) -> None: |
|
self.syncs.all_streams_wait_for_stream(stream) |
|
|
|
def _handle_event_synchronization(self, event: EventId) -> None: |
|
self.syncs.all_streams_wait_for_event(event) |
|
|
|
|
|
def zip_by_key(a: Dict[TK, TVa], b: Dict[TK, TVb]) -> Iterator[Tuple[TK, TVa, TVb]]: |
|
for arg, value in a.items(): |
|
if arg in b: |
|
yield arg, value, b[arg] |
|
|
|
|
|
def zip_arguments( |
|
schema: torch.FunctionSchema, args: Tuple[Any, ...], kwargs: Dict[str, Any] |
|
) -> Iterator[Tuple[torch.Argument, Any]]: |
|
schema_args = schema.arguments[: len(args)] |
|
schema_kwargs = {arg.name: arg for arg in schema.arguments[len(args) :]} |
|
|
|
yield from zip(schema_args, args) |
|
|
|
for _, argument, value in zip_by_key(schema_kwargs, kwargs): |
|
yield (argument, value) |
|
|
|
|
|
class ArgumentHandler: |
|
def __init__(self): |
|
self.dataptrs_read: Set[DataPtr] = set() |
|
self.dataptrs_written: Set[DataPtr] = set() |
|
self.tensor_aliases: Dict[DataPtr, List[str]] = dict() |
|
self.outputs: Set[DataPtr] = set() |
|
|
|
def _handle_argument( |
|
self, |
|
value: Any, |
|
is_write: bool, |
|
name: Optional[str] = None, |
|
is_output: bool = False, |
|
) -> None: |
|
if isinstance(value, torch.Tensor) and value.is_cuda: |
|
data_ptr = value.data_ptr() |
|
if is_write: |
|
self.dataptrs_written.add(data_ptr) |
|
else: |
|
self.dataptrs_read.add(data_ptr) |
|
|
|
self.tensor_aliases.setdefault(data_ptr, []) |
|
if name is not None: |
|
self.tensor_aliases[data_ptr].append(name) |
|
if is_output: |
|
self.outputs.add(data_ptr) |
|
|
|
def parse_inputs( |
|
self, |
|
schema: torch.FunctionSchema, |
|
args: Tuple[Any, ...], |
|
kwargs: Dict[str, Any], |
|
) -> None: |
|
for argument, value in zip_arguments(schema, args, kwargs): |
|
is_write = argument.alias_info is not None and argument.alias_info.is_write |
|
tree_map( |
|
functools.partial( |
|
self._handle_argument, is_write=is_write, name=argument.name |
|
), |
|
value, |
|
) |
|
|
|
def parse_outputs(self, outputs: Any) -> None: |
|
tree_map( |
|
functools.partial(self._handle_argument, is_write=True, is_output=True), |
|
outputs, |
|
) |
|
|
|
|
|
class CUDASanitizerDispatchMode(TorchDispatchMode): |
|
def __init__(self): |
|
self.event_handler = EventHandler() |
|
torch._C._activate_cuda_trace() |
|
cuda_trace.register_callback_for_cuda_event_creation( |
|
self.event_handler._handle_event_creation |
|
) |
|
cuda_trace.register_callback_for_cuda_event_deletion( |
|
self.event_handler._handle_event_deletion |
|
) |
|
cuda_trace.register_callback_for_cuda_event_record( |
|
self.event_handler._handle_event_record |
|
) |
|
cuda_trace.register_callback_for_cuda_event_wait( |
|
self.event_handler._handle_event_wait |
|
) |
|
cuda_trace.register_callback_for_cuda_memory_allocation( |
|
self.event_handler._handle_memory_allocation |
|
) |
|
cuda_trace.register_callback_for_cuda_memory_deallocation( |
|
self.event_handler._handle_memory_deallocation |
|
) |
|
cuda_trace.register_callback_for_cuda_stream_creation( |
|
self.event_handler._handle_stream_creation |
|
) |
|
cuda_trace.register_callback_for_cuda_device_synchronization( |
|
self.event_handler._handle_device_synchronization |
|
) |
|
cuda_trace.register_callback_for_cuda_stream_synchronization( |
|
self.event_handler._handle_stream_synchronization |
|
) |
|
cuda_trace.register_callback_for_cuda_event_synchronization( |
|
self.event_handler._handle_event_synchronization |
|
) |
|
|
|
def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
|
if kwargs is None: |
|
kwargs = {} |
|
|
|
argument_handler = ArgumentHandler() |
|
argument_handler.parse_inputs(func._schema, args, kwargs) |
|
|
|
outputs = func(*args, **kwargs) |
|
|
|
argument_handler.parse_outputs(outputs) |
|
errors = self.event_handler._handle_kernel_launch( |
|
torch.cuda.current_stream().cuda_stream, |
|
argument_handler.dataptrs_read - argument_handler.dataptrs_written, |
|
argument_handler.dataptrs_written, |
|
argument_handler.outputs, |
|
func._schema, |
|
argument_handler.tensor_aliases, |
|
) |
|
if errors: |
|
for error in errors: |
|
print(error, file=sys.stderr) |
|
raise CUDASanitizerErrors(errors) |
|
|
|
return outputs |
|
|
|
|
|
class CUDASanitizer: |
|
"""Manages the lifetime of a CUDASanitizer dispatch mode object. |
|
|
|
The CUDASanitizer class wraps the entering/exiting functions of the dispatch mode |
|
context manager in the enable function/destructor, respectively. This is to |
|
explicitly set the lifetime of the dispatch mode object to that of the application. |
|
This approach was deemed more elegant than using the atexit module. |
|
""" |
|
|
|
def __init__(self): |
|
self.dispatch = CUDASanitizerDispatchMode() |
|
self.enabled = False |
|
|
|
def enable(self): |
|
self.dispatch.__enter__() |
|
self.enabled = True |
|
|
|
def __del__(self): |
|
if self.enabled: |
|
self.dispatch.__exit__(None, None, None) |
|
|
|
|
|
def enable_cuda_sanitizer(): |
|
"""Enables CUDA Sanitizer. |
|
|
|
The sanitizer will begin to analyze low-level CUDA calls invoked by torch functions |
|
for synchronization errors. All data races found will be printed to the standard |
|
error output along with stack traces of suspected causes. For best results, the |
|
sanitizer should be enabled at the very beginning of the program. |
|
""" |
|
cuda_sanitizer.enable() |
|
|
|
|
|
cuda_sanitizer = CUDASanitizer() |
|
|