| import torch | |
| import warnings | |
| from typing import Any | |
| __all__ = ["detect_anomaly", "set_detect_anomaly"] | |
| class detect_anomaly(object): | |
| r"""Context-manager that enable anomaly detection for the autograd engine. | |
| This does two things: | |
| - Running the forward pass with detection enabled will allow the backward | |
| pass to print the traceback of the forward operation that created the failing | |
| backward function. | |
| - If ``check_nan`` is ``True``, any backward computation that generate "nan" | |
| value will raise an error. Default ``True``. | |
| .. warning:: | |
| This mode should be enabled only for debugging as the different tests | |
| will slow down your program execution. | |
| Example: | |
| >>> import torch | |
| >>> from torch import autograd | |
| >>> class MyFunc(autograd.Function): | |
| ... @staticmethod | |
| ... def forward(ctx, inp): | |
| ... return inp.clone() | |
| ... @staticmethod | |
| ... def backward(ctx, gO): | |
| ... # Error during the backward pass | |
| ... raise RuntimeError("Some error in backward") | |
| ... return gO.clone() | |
| >>> def run_fn(a): | |
| ... out = MyFunc.apply(a) | |
| ... return out.sum() | |
| >>> inp = torch.rand(10, 10, requires_grad=True) | |
| >>> out = run_fn(inp) | |
| >>> out.backward() | |
| Traceback (most recent call last): | |
| File "<stdin>", line 1, in <module> | |
| File "/your/pytorch/install/torch/_tensor.py", line 93, in backward | |
| torch.autograd.backward(self, gradient, retain_graph, create_graph) | |
| File "/your/pytorch/install/torch/autograd/__init__.py", line 90, in backward | |
| allow_unreachable=True) # allow_unreachable flag | |
| File "/your/pytorch/install/torch/autograd/function.py", line 76, in apply | |
| return self._forward_cls.backward(self, *args) | |
| File "<stdin>", line 8, in backward | |
| RuntimeError: Some error in backward | |
| >>> with autograd.detect_anomaly(): | |
| ... inp = torch.rand(10, 10, requires_grad=True) | |
| ... out = run_fn(inp) | |
| ... out.backward() | |
| Traceback of forward call that caused the error: | |
| File "tmp.py", line 53, in <module> | |
| out = run_fn(inp) | |
| File "tmp.py", line 44, in run_fn | |
| out = MyFunc.apply(a) | |
| Traceback (most recent call last): | |
| File "<stdin>", line 4, in <module> | |
| File "/your/pytorch/install/torch/_tensor.py", line 93, in backward | |
| torch.autograd.backward(self, gradient, retain_graph, create_graph) | |
| File "/your/pytorch/install/torch/autograd/__init__.py", line 90, in backward | |
| allow_unreachable=True) # allow_unreachable flag | |
| File "/your/pytorch/install/torch/autograd/function.py", line 76, in apply | |
| return self._forward_cls.backward(self, *args) | |
| File "<stdin>", line 8, in backward | |
| RuntimeError: Some error in backward | |
| """ | |
| def __init__(self, check_nan=True) -> None: | |
| self.prev = torch.is_anomaly_enabled() | |
| self.check_nan = check_nan | |
| self.prev_check_nan = torch.is_anomaly_check_nan_enabled() | |
| warnings.warn('Anomaly Detection has been enabled. ' | |
| 'This mode will increase the runtime ' | |
| 'and should only be enabled for debugging.', stacklevel=2) | |
| def __enter__(self) -> None: | |
| torch.set_anomaly_enabled(True, self.check_nan) | |
| def __exit__(self, *args: Any) -> None: | |
| torch.set_anomaly_enabled(self.prev, self.prev_check_nan) | |
| class set_detect_anomaly(object): | |
| r"""Context-manager that sets the anomaly detection for the autograd engine on or off. | |
| ``set_detect_anomaly`` will enable or disable the autograd anomaly detection | |
| based on its argument :attr:`mode`. | |
| It can be used as a context-manager or as a function. | |
| See ``detect_anomaly`` above for details of the anomaly detection behaviour. | |
| Args: | |
| mode (bool): Flag whether to enable anomaly detection (``True``), | |
| or disable (``False``). | |
| check_nan (bool): Flag whether to raise an error when the backward | |
| generate "nan" | |
| """ | |
| def __init__(self, mode: bool, check_nan: bool = True) -> None: | |
| self.prev = torch.is_anomaly_enabled() | |
| self.prev_check_nan = torch.is_anomaly_check_nan_enabled() | |
| torch.set_anomaly_enabled(mode, check_nan) | |
| def __enter__(self) -> None: | |
| pass | |
| def __exit__(self, *args: Any) -> None: | |
| torch.set_anomaly_enabled(self.prev, self.prev_check_nan) | |