|
from torch import Tensor, memory_format |
|
from typing import Callable, Optional, List, overload, Tuple |
|
from torch.types import _bool, _dtype, _device |
|
|
|
|
|
|
|
fractional_max_pool2d: Callable |
|
fractional_max_pool3d: Callable |
|
max_pool1d: Callable |
|
max_pool2d: Callable |
|
max_pool3d: Callable |
|
adaptive_max_pool1d: Callable |
|
adaptive_max_pool2d: Callable |
|
adaptive_max_pool3d: Callable |
|
avg_pool2d: Callable |
|
avg_pool3d: Callable |
|
hardtanh_: Callable |
|
elu_: Callable |
|
leaky_relu_: Callable |
|
logsigmoid: Callable |
|
softplus: Callable |
|
softshrink: Callable |
|
one_hot: Callable |
|
hardtanh: Callable |
|
leaky_relu: Callable |
|
hardsigmoid: Callable |
|
|
|
|
|
def mkldnn_linear(input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: ... |
|
|
|
|
|
def mkldnn_reorder_conv2d_weight(self: Tensor, padding: List, stride: List, dilatation: List, groups: int) -> Tensor: ... |
|
def mkldnn_reorder_conv3d_weight(self: Tensor, padding: List, stride: List, dilatation: List, groups: int) -> Tensor: ... |
|
|
|
|
|
def mkldnn_prelu(input: Tensor, weight: Tensor) -> Tensor: ... |
|
|
|
|
|
@overload |
|
def _parse_to(device: _device, dtype: _dtype, non_blocking: _bool, copy: _bool, *, |
|
memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ... |
|
@overload |
|
def _parse_to(dtype: _dtype, non_blocking: _bool, copy: _bool, *, |
|
memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ... |
|
@overload |
|
def _parse_to(tensor: Tensor, non_blocking: _bool, copy: _bool, *, |
|
memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ... |
|
|
|
|
|
def pad_sequence(sequences: List[Tensor], batch_first: bool = False, |
|
padding_value: float = ...) -> Tensor: ... |
|
|
|
def flatten_dense_tensors(tensors: List[Tensor]) -> Tensor: ... |
|
|
|
def unflatten_dense_tensors(flat: Tensor, tensors: List[Tensor]) -> List[Tensor]: ... |
|
|