MattStammers commited on
Commit
be9fa2d
1 Parent(s): c3dba2f

Upload PPO BipedalWalker-v3 trained ? optimised agent

Browse files
BipedalWalker-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e316835a91cab308ea07ff57b3e91fd13ee6fa41cd9524ec1d6c67229323352d
3
+ size 177264
BipedalWalker-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
BipedalWalker-v3/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b99749e9bd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b99749e9c60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b99749e9cf0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b99749e9d80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b99749e9e10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b99749e9ea0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b99749e9f30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b99749e9fc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b99749ea050>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b99749ea0e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b99749ea170>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b99749ea200>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b99749e4b80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 5046272,
25
+ "_total_timesteps": 5000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1691336724068237129,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAADLx6z4jpa89oNPPPoMRBL1ZDmu+uW1PPwC4Mb8AAIC/AAAAAG8cdz/LHd2+kPdWvv3/f78AAAAA0pCVPjQZlz7XPJw+u0KkPliZsD7PGsI+h9fdPpZ5Bz8KxjQ/AACAP7PXXz56a5C9Dq8EP7plRj0kfA6/6qQHv/AmnL2g6Wk/AAAAAFO/ij/8tb8+sFDePv3/f78AAAAAZdyVPo6Wlz4dupw+9s+lPoC8tD4Zicw+HSHyPrnGGj9dcF0/AACAP40OSj44eSc9DBtWPjYdXr26uam9TOorv0baF789lSM+AACAP8Ywjj8AAAAAZh9rPx1adL4AAAAAi7uePh8joT7QxqY+T4uxPkmUwj5BVNs+TekCP5RjIz9MRWM/AACAP+iguz7WuEQ9pSDGPiGM7bwcP+a9BQCAP/D/Kr8o6bq/AACAP5h0hD98KaE9uisNvwAAgL8AAIA/OruZPvu2mj4wHp8+FTWnPqH7tD4OhMo+g8XsPkUwFT+RAFk/AACAP/sqej6N5hs9jEPGPmGuuD0Vdie/YSqAP4A7wry0AIC/AAAAAFgskT8AwN23QErWvDFegL8AAAAARg2SPuO1kz5I4Zg+BDOiPuf1sD73m8c+awPqPndZFD+yMUE/AACAP1/YDT9mHLS5n03IPkDm4r18RMy+GYahviD9Hr8AAAAAAACAP7OTez///38/uHirvvj/fz8AAAAAaKmWPgdHmj7WZqE+ZiCtPtqivz7x+tc+wOL4PvHXFT9km0Y/AACAP8XIlD7ymZo9Y+XTPvdjirtumY++qrPRPnb6DL8BAIC/AAAAADfLdz+YWue9ZCESv2Xphr8AAIA/N2mnPgpHqj7p8K8+qme5PlOfxz72M90+cFH+PhI2Gj+5IFI/AACAPzjU1z5jLlG9NCTCPu4lXLzBGSu/QOnFvcCcob4CAIA/AAAAAEQDiD8Aeqk+gG4ZPgEAgD8AAAAAHCmJPou6iD4ZaY0+2AeWPltgoj53Hrc+MdTcPv5qET9JS1U/AACAP4d8pT7qyw69YqibPkieeb3fzVm9YLJTPxA3E78tCg2/AACAP6Eekz/NL0s/iIwlPvz/fz8AAAAAEUCgPg9noD4wt6U+0p6vPmWavz6qz9U+2p/6PuvyHz89v2s/AACAP1SRuz7Pgk69zoDePlUMhTws6Cq/HG/8vhDFAL7PRzM/AAAAAHYFjD+QDJe9COm7Pvv/fz8AAAAAlAqPPpZijz5M/JI+rxeaPlrKpj63frw+habfPmUmDD9ABEQ/AACAPzKG0j5Es188tsLjPnKDCT3FaBS/8ih2v4DUlr4XFT0/AAAAALxMhj/7/3+/oLScPhTk3j8AAAAALVOYPp0UmT7aKZ0+H4ajPrQlrj79Eb4+vuPePhaZBD/yMC8/AACAP3RCjT5mXws9br7uPtEjiT1vAGK/7NSDvyiOpD6LAYA/AAAAADhWkT8AAFg1gNRiPGyCT78AAIA/tp6PPth4kD4MHJU+8DKePkZ6qz6AZr8+cK7fPl7VDD9kzEg/AACAP5KIpD7RroI9fVLJPgTWGDxEzPi+9P9/P1TSEb/7/3+/AAAAAP4Tcz9O68y+2Odgvv9uCL8AAIA/nX2cPrnFoD6wSqg+Aju0Pv2hxD6kZNw+rUb9PuRlGj/1mFo/AACAP5Q73D7x2Y88xgLMPmTyUb3MkYa+FZRNv8ImBr+J2JQ+AACAP4csjT8AAAAAAEGYPsvxcL4AAAAAnxmZPnIVmj7nSKA+4FGrPtW0vT47d9Y++RL3PvXmFz/kT0U/AACAP8xnGD5k+sC9uzEFP/xpQjw/kky/zB8hvroDwT4Po0E/AAAAAASvjD8AAAAA5AqSPjwmHT8AAIA/7ZOXPsXFmT6GGKA+RxaqPug6uT6X6c4+TpXtPmKwDD8qNjs/AACAPwaHpD4f5uO9kZEFP1rVg7tf4Em/cEQUP4A8sDv9Ink9AAAAAPzEiT+4/om+UJ6WPp3g2j4AAAAABIiLPkGhiz7p5I8+J5WZPsMJqD4Anb4+vGvpPlenFT9EgFg/AACAP/s4xz4M0hG9mHkBPy5xN73YhwS/XDUqv7RxAb/4lhc/AACAPzUciT/aUDg+IsuOPl0mgD8AAAAAOJiOPha6kT7d9pc+tBqiPmvSsD7pX8Y+kWTnPtu/ED8kjUw/AACAPw3kJz7ptgQ93MrePppAoz3PbxK//b9/P6BqEr6I0uC/AAAAALxnkT8AwNI3rKwOPg9gSr8AAAAAnpiVPlcmmD53+p4+HDyoPsF8tj6OtM4+2MHxPgmoFD/nVFE/AACAP6p7hT5rXhi9uOyVPmY0fr1uGZk9VgS+veKEI78AAAAAAACAP/59ij8uxqi+TuD6PgEAgD8AAAAA0WibPv1Umz5pSJ4+bA6lPtRRsD7s/ME+ZFPgPgpGCT8M3Do/AACAP39TaT7+KJk9VG6yPlKKaj14hAa//n9kP2BwUr4FAIC/AACAP2nAgz92QTq+YHShPQQAgL8AAIA/stmcPsPenj7dwaQ+P5KvPj5YwT6HLNo+s3ECP3Z6Ij+481U/AACAP1o7Az+d1DI8Gq62PnhqojuhC0i/U19Jv6huW74eHR4/AAAAAEwOkT8AAAAA/PcmP/v/f78AAAAAeZONPhMvjz7qMZQ+iDqdPp6Jqz7/fcE+0MHjPmdEDj+fWkM/AACAP0mvWT4QihK+/RwIP3BCFTxep06/AAAAAJpboT68UmY/AACAP79EkT8AAAAAQNgSPvv/f78AAAAArRaPPvA8kD7nRpU+i36gPgawsj4DB88+IGv3PuChGT+drE0/AACAPwtaDz+U5Z+82jHUPuBG1zwU/Qy/deUfvzij6L7whQY/AACAPy4bkT8AAAAAUEwAPwEAgD8AAAAA0SqSPn0Jkz6Pm5Y+iM+ePi7VrD7Oo8A+CNXhPptKDT8Y4EQ/AACAP+5KnD76qKI80KbNPoYuYL3iROi+AwCAPzy1r74AAIC/AAAAAJQqjj+qYHC+eLXIPfz/fz8AAAAAiQKRPuBukT5NCZc+kEShPqhHrj7cOMI+p0jiPrtWDj8DHT4/AACAP19QBD/XeEA8g5u9Ps/cfr1Tj6y+AACAP3TZIb+UMje/AACAPxJXZT9HK5k+QPNIvfz/fz8AAAAAqtOPPr1ikj6QYJg+c6qhPiSisD7z2sc+bMfqPqADFD+6rFI/AACAP+RDTT7T0oi9FLADPywKMT3HQh6/tZcZv9Aotj0BAIA/AAAAACrCjT8AAAAA4DztPvv/f78AAAAAtviWPteBmT6R+J8+7dmpPhkBuT7Oms8+Kkv3PvKxGj9JUl0/AACAP0uVQD4K7py9nhARP4PKBzqvcCW/sl0fv2jIhT0LCYI/AAAAANHOjz8AENg4KGApPiWlf78AAAAA5jKSPvDbkz4WPpk+dECjPiidtD5qz88+mM71PrtjGD/SCUU/AACAP25vgD6/UIM9nFXaPsiwJT0G2ue+1MeRPXj7mr4jNX++AAAAAPtTeD8BURO/YPCPvVvRKj4AAIA/l4ijPiOZpj7UHa4+HtC4Pr8dyj56+eM+XCIDP3ZtGz+wgUc/AACAP1UHFT4ccWg92UyKPrqnkD06yaq+9f9/P/TYxb79/3+/AAAAAM+Hgj9/LIG+gCw6vAAAgL8AAAAAmw6uPqMIsD7LMbY++0zBPnjk0j5M4u0+SgEMPyDoLj/qTmw/AACAPzXAZz60cZG8zoS8PhPeo72oGv07owLpPrqrLb9bVAy/AACAPxDujD8AAAAAgKn4Pf3/fz8AAAAAeQebPmilnT5ZaKM+0T+tPooCvT5iadU+R8v9Pl3KHz93zHU/AACAP3+yuLx/WLO8AcaDvDskn70Kvaw+RN2NvkDK37yVu/Y8AAAAADK0MD/+/38/eFgUvnPFQT8AAAAAN5PePk0a4T4W++g+zy73PtLWBj/IGBg/+AczP16pXz8AAIA/AACAP85qRD5x8GY9Cve8Pu3FOz2WYbK+trgCPxgQ7r4AAIC/AAAAAHUOhT+3Npi+APNPO/cMEL8AAAAAFOWcPiWhnz52Vac+Q3y0Po5hyD6OMOI+eh8HP20pKz+6aXA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.009254400000000107,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGh2mP5pJyMAWyUTd4EjAF0lEdAwBhH5wfhdnV9lChoBkdAcbnfEXLvC2gHTcIEaAhHQMAZG+Kjzqd1fZQoaAZHQHGbj+BH09RoB03UBGgIR0DAGa1vn8sMdX2UKGgGR0BxjwZHd43WaAdNzgRoCEdAwBn+SpR4yHV9lChoBkdAcXlcJMQEp2gHTfwEaAhHQMAarq4QSSN1fZQoaAZHQHGnS5qdpZhoB03MBGgIR0DAGyiQHRkVdX2UKGgGR0BxpHy3CsOoaAdNwARoCEdAwBs5RplBhXV9lChoBkdAcaA6Tnq3VmgHTd8EaAhHQMAbznm7rcF1fZQoaAZHQHGq8I3R5TtoB03QBGgIR0DAHH5tUGVzdX2UKGgGR0Bx0mmYSg5BaAdNqQRoCEdAwByIudwvQHV9lChoBkdAcVL1zhgmZ2gHTSEFaAhHQMActzOX3QF1fZQoaAZHQHHKy1Aqur9oB02wBGgIR0DAHM3oTwlTdX2UKGgGR0BxnUubqhUSaAdN0QRoCEdAwB1pzwMH8nV9lChoBkdAcWqs4ku6E2gHTQ8FaAhHQMAdqYe9zwN1fZQoaAZHQHHFk1hsqKBoB024BGgIR0DAHfNfiPyTdX2UKGgGR0Bx0xqsU7CBaAdNuARoCEdAwB5aLUkOZ3V9lChoBkdAcZElD4QBgmgHTeQEaAhHQMAedYyO7xx1fZQoaAZHQHGwtmL9/BpoB03MBGgIR0DAHo/Ue+23dX2UKGgGR0BxYT5i3G4raAdNCwVoCEdAwB631PFefXV9lChoBkdAcbycTJyQxWgHTcgEaAhHQMAevEUCaJB1fZQoaAZHQHGdylN1yNpoB03SBGgIR0DAHsL+zdDZdX2UKGgGR0BxqQD4gzP9aAdN1QRoCEdAwB9IoHcDbXV9lChoBkdAcbZnUlRgqmgHTdkEaAhHQMAfcwSi/PB1fZQoaAZHQHFdF5B1LapoB035BGgIR0DAIE3aDf3wdX2UKGgGR0Bx2APDpC8faAdNlQRoCEdAwCBac1fmcXV9lChoBkdAcYfNlRP422gHTeQEaAhHQMAhBaPCEYh1fZQoaAZHQHGbQla8pTdoB03pBGgIR0DAIU30mMOxdX2UKGgGR0Bx0F/I8yN5aAdNuQRoCEdAwCGB9XtBwHV9lChoBkdAca0tpVS4v2gHTdAEaAhHQMAhmm0E5hl1fZQoaAZHQHGXViz9jwxoB03wBGgIR0DAIduJSBK+dX2UKGgGR0BxokzAN5MUaAdN2ARoCEdAwCKWk4WDYnV9lChoBkdAcYpLJ0W/J2gHTeUEaAhHQMAjp/HYHxB1fZQoaAZHQHHWNX5nDixoB02nBGgIR0DAJH5VhkRSdX2UKGgGR0Bxk00pEx7BaAdN2ARoCEdAwCSOcENe+nV9lChoBkdAccTftx+8XmgHTawEaAhHQMAksuhsZYR1fZQoaAZHQHFFYzi0fHRoB00vBWgIR0DAJL4bdadMdX2UKGgGR0BxnYEQoTf0aAdN1wRoCEdAwCWV0TURWnV9lChoBkdAcadPEKmbb2gHTckEaAhHQMAmANLUTct1fZQoaAZHQHHWGLk0aZRoB02sBGgIR0DAJmXObAk+dX2UKGgGR0Bxcg8B+4LDaAdNAAVoCEdAwCZye2d/a3V9lChoBkdAcY8NayKNymgHTdcEaAhHQMAoRAZTAFh1fZQoaAZHQHGrpb+tKZloB03FBGgIR0DAKFKwY+B6dX2UKGgGR0Bxuger+5vtaAdNxgRoCEdAwChq2606YHV9lChoBkdAcXTtIkJKJ2gHTfYEaAhHQMAogcafjCJ1fZQoaAZHQHHGpjYqXnhoB02oBGgIR0DAKQ0VYZEVdX2UKGgGR0BxlNZdOZb7aAdN4wRoCEdAwEDXE2pAEHV9lChoBkdAcZ1enAIppmgHTeoEaAhHQMBBbghB7eF1fZQoaAZHQHG2VKbrkbRoB024BGgIR0DAQW+gJ1JUdX2UKGgGR0Bxp1I/Z/TcaAdNzARoCEdAwEGyFAVwgnV9lChoBkdAccj/o7muDGgHTb8EaAhHQMBB21h9b5d1fZQoaAZHQHGl2orFwUBoB03NBGgIR0DAQgOxB3RpdX2UKGgGR0BxrWwgTyrgaAdN2ARoCEdAwEI2e05U+HV9lChoBkdAcZYY3vQWvmgHTd0EaAhHQMBDHZ5qubJ1fZQoaAZHQHFGrhvR7Z5oB002BWgIR0DAQyYr8R+SdX2UKGgGR0Bxsoe0Xxe+aAdNwwRoCEdAwEPog00m+nV9lChoBkdAcYfYvnKW9mgHTQYFaAhHQMBD6NUXHip1fZQoaAZHQHGC1urIYFdoB03JBGgIR0DAQ/VXzUZvdX2UKGgGR0BxyOE12q1gaAdNqQRoCEdAwESIC4Bmw3V9lChoBkdAca+LBKtga2gHTbgEaAhHQMBEj7FsHjZ1fZQoaAZHQHGRxYA80UJoB03qBGgIR0DARKSKJl8PdX2UKGgGR0BxcIWWQfZFaAdN8wRoCEdAwETfdEb5unV9lChoBkdAcaPnXd0q6WgHTcgEaAhHQMBFDS6tknV1fZQoaAZHwDg9eD3/PxBoB02QAWgIR0DARY56QeV+dX2UKGgGR0BxmQBDG96DaAdN3gRoCEdAwEX0/zreInV9lChoBkdAcaid6sySFGgHTc4EaAhHQMBG47G3nZF1fZQoaAZHQHHQVwDNhVloB03XBGgIR0DAR97M7lq8dX2UKGgGR0BxpqXE61b8aAdNwgRoCEdAwEfj9qk/KXV9lChoBkdAcX/Th5xBFGgHTfUEaAhHQMBIQ0U47zV1fZQoaAZHQHGJYAwPAfxoB00QBWgIR0DASEZqVQhwdX2UKGgGR0BxewGnn+yaaAdN/QRoCEdAwElaXKKYRnV9lChoBkdAcZnPAfuCw2gHTfEEaAhHQMBJ3C1qnFZ1fZQoaAZHQHGuiVbA1vVoB03HBGgIR0DASe9Net0WdX2UKGgGR0BxYooa1kUcaAdNDAVoCEdAwErmL5RCQnV9lChoBkdAcaducMEzPGgHTdoEaAhHQMBLliSA6Ml1fZQoaAZHQHGsGf029+RoB03MBGgIR0DAS689ZA6ddX2UKGgGR0BxpE04zabnaAdN1wRoCEdAwEuwxzq8lHV9lChoBkdAcc94hUzbe2gHTbMEaAhHQMBMCQiA2AJ1fZQoaAZHQHHiFOsT37FoB02wBGgIR0DATDxAQg9vdX2UKGgGR0BxYLKJVKf4aAdNKAVoCEdAwExDrWRRuXV9lChoBkdAcaYWTHKfWmgHTb8EaAhHQMBNOTpxFRZ1fZQoaAZHQHG9GPtD2J1oB02xBGgIR0DATUQWDYh/dX2UKGgGR0BxWPSWqtHQaAdNDwVoCEdAwE2ZyjHn2nV9lChoBkdAcXorLhaTwGgHTf8EaAhHQMBOBip3os91fZQoaAZHQHFtPuXu3MJoB00BBWgIR0DATiclzEJjdX2UKGgGR0Bxez0HyEteaAdN9QRoCEdAwE6jRO1v23V9lChoBkdAcajwdKdxyWgHTc4EaAhHQMBOvmetjkN1fZQoaAZHQHGWjsQd0aJoB03ZBGgIR0DATtJXr+o+dX2UKGgGR0BxWYwlByCGaAdNHAVoCEdAwE7z7sv7FnV9lChoBkdAcWuWGyon8mgHTfcEaAhHQMBPGVQyhzx1fZQoaAZHQHG94re67NBoB03MBGgIR0DAT1ctNBWxdX2UKGgGR0BxqoiA2AG0aAdNyARoCEdAwE9mOI68x3V9lChoBkdAcYMSzgMtsmgHTegEaAhHQMBPji0ngHh1fZQoaAZHQHG8Axi5NGpoB02/BGgIR0DAT7sry1/ldX2UKGgGR0BxoXEuQIUraAdN3ARoCEdAwE/KN5t3wHV9lChoBkdAcZ+vy9VWCGgHTcEEaAhHQMBQdXCj1wp1fZQoaAZHQHGdcuez2OBoB03nBGgIR0DAUa0RJ2+xdX2UKGgGR0BxUK9XcQAdaAdNJwVoCEdAwFM+x3V093V9lChoBkdAca0TvRZ2ZGgHTboEaAhHQMBTWWqLjxV1fZQoaAZHQHHCZPVNHpdoB03RBGgIR0DAU45hBqsVdX2UKGgGR0BxvS9i+cpcaAdNvwRoCEdAwFPHMTN+s3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 930,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVRgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgUSxiFlGgYdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoECiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLGIWUaBh0lFKUjARoaWdolGgQKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksYhZRoGHSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
61
+ "_shape": [
62
+ 24
63
+ ],
64
+ "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
65
+ "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
66
+ "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
67
+ "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVoQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True True True True]",
75
+ "bounded_above": "[ True True True True]",
76
+ "_shape": [
77
+ 4
78
+ ],
79
+ "low": "[-1. -1. -1. -1.]",
80
+ "high": "[1. 1. 1. 1.]",
81
+ "low_repr": "-1.0",
82
+ "high_repr": "1.0",
83
+ "_np_random": null
84
+ },
85
+ "n_envs": 32,
86
+ "n_steps": 2048,
87
+ "gamma": 0.999,
88
+ "gae_lambda": 0.95,
89
+ "ent_coef": 0.0,
90
+ "vf_coef": 0.5,
91
+ "max_grad_norm": 0.5,
92
+ "batch_size": 64,
93
+ "n_epochs": 10,
94
+ "clip_range": {
95
+ ":type:": "<class 'function'>",
96
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
97
+ },
98
+ "clip_range_vf": null,
99
+ "normalize_advantage": true,
100
+ "target_kl": null,
101
+ "lr_schedule": {
102
+ ":type:": "<class 'function'>",
103
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
104
+ }
105
+ }
BipedalWalker-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e4579cdba0872593b5c5954edc55871bb7895f6c7fc8b9246f64530b65008c1
3
+ size 104688
BipedalWalker-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:390116fa933b41334f3b8ac6a868245f2a84db96523a6ecb54288c97271ffd66
3
+ size 51710
BipedalWalker-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
BipedalWalker-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalker-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: BipedalWalker-v3
16
+ type: BipedalWalker-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 302.24 +/- 1.27
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **BipedalWalker-v3**
25
+ This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b99749e9bd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b99749e9c60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b99749e9cf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b99749e9d80>", "_build": "<function ActorCriticPolicy._build at 0x7b99749e9e10>", "forward": "<function ActorCriticPolicy.forward at 0x7b99749e9ea0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b99749e9f30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b99749e9fc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b99749ea050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b99749ea0e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b99749ea170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b99749ea200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b99749e4b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5046272, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691336724068237129, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAADLx6z4jpa89oNPPPoMRBL1ZDmu+uW1PPwC4Mb8AAIC/AAAAAG8cdz/LHd2+kPdWvv3/f78AAAAA0pCVPjQZlz7XPJw+u0KkPliZsD7PGsI+h9fdPpZ5Bz8KxjQ/AACAP7PXXz56a5C9Dq8EP7plRj0kfA6/6qQHv/AmnL2g6Wk/AAAAAFO/ij/8tb8+sFDePv3/f78AAAAAZdyVPo6Wlz4dupw+9s+lPoC8tD4Zicw+HSHyPrnGGj9dcF0/AACAP40OSj44eSc9DBtWPjYdXr26uam9TOorv0baF789lSM+AACAP8Ywjj8AAAAAZh9rPx1adL4AAAAAi7uePh8joT7QxqY+T4uxPkmUwj5BVNs+TekCP5RjIz9MRWM/AACAP+iguz7WuEQ9pSDGPiGM7bwcP+a9BQCAP/D/Kr8o6bq/AACAP5h0hD98KaE9uisNvwAAgL8AAIA/OruZPvu2mj4wHp8+FTWnPqH7tD4OhMo+g8XsPkUwFT+RAFk/AACAP/sqej6N5hs9jEPGPmGuuD0Vdie/YSqAP4A7wry0AIC/AAAAAFgskT8AwN23QErWvDFegL8AAAAARg2SPuO1kz5I4Zg+BDOiPuf1sD73m8c+awPqPndZFD+yMUE/AACAP1/YDT9mHLS5n03IPkDm4r18RMy+GYahviD9Hr8AAAAAAACAP7OTez///38/uHirvvj/fz8AAAAAaKmWPgdHmj7WZqE+ZiCtPtqivz7x+tc+wOL4PvHXFT9km0Y/AACAP8XIlD7ymZo9Y+XTPvdjirtumY++qrPRPnb6DL8BAIC/AAAAADfLdz+YWue9ZCESv2Xphr8AAIA/N2mnPgpHqj7p8K8+qme5PlOfxz72M90+cFH+PhI2Gj+5IFI/AACAPzjU1z5jLlG9NCTCPu4lXLzBGSu/QOnFvcCcob4CAIA/AAAAAEQDiD8Aeqk+gG4ZPgEAgD8AAAAAHCmJPou6iD4ZaY0+2AeWPltgoj53Hrc+MdTcPv5qET9JS1U/AACAP4d8pT7qyw69YqibPkieeb3fzVm9YLJTPxA3E78tCg2/AACAP6Eekz/NL0s/iIwlPvz/fz8AAAAAEUCgPg9noD4wt6U+0p6vPmWavz6qz9U+2p/6PuvyHz89v2s/AACAP1SRuz7Pgk69zoDePlUMhTws6Cq/HG/8vhDFAL7PRzM/AAAAAHYFjD+QDJe9COm7Pvv/fz8AAAAAlAqPPpZijz5M/JI+rxeaPlrKpj63frw+habfPmUmDD9ABEQ/AACAPzKG0j5Es188tsLjPnKDCT3FaBS/8ih2v4DUlr4XFT0/AAAAALxMhj/7/3+/oLScPhTk3j8AAAAALVOYPp0UmT7aKZ0+H4ajPrQlrj79Eb4+vuPePhaZBD/yMC8/AACAP3RCjT5mXws9br7uPtEjiT1vAGK/7NSDvyiOpD6LAYA/AAAAADhWkT8AAFg1gNRiPGyCT78AAIA/tp6PPth4kD4MHJU+8DKePkZ6qz6AZr8+cK7fPl7VDD9kzEg/AACAP5KIpD7RroI9fVLJPgTWGDxEzPi+9P9/P1TSEb/7/3+/AAAAAP4Tcz9O68y+2Odgvv9uCL8AAIA/nX2cPrnFoD6wSqg+Aju0Pv2hxD6kZNw+rUb9PuRlGj/1mFo/AACAP5Q73D7x2Y88xgLMPmTyUb3MkYa+FZRNv8ImBr+J2JQ+AACAP4csjT8AAAAAAEGYPsvxcL4AAAAAnxmZPnIVmj7nSKA+4FGrPtW0vT47d9Y++RL3PvXmFz/kT0U/AACAP8xnGD5k+sC9uzEFP/xpQjw/kky/zB8hvroDwT4Po0E/AAAAAASvjD8AAAAA5AqSPjwmHT8AAIA/7ZOXPsXFmT6GGKA+RxaqPug6uT6X6c4+TpXtPmKwDD8qNjs/AACAPwaHpD4f5uO9kZEFP1rVg7tf4Em/cEQUP4A8sDv9Ink9AAAAAPzEiT+4/om+UJ6WPp3g2j4AAAAABIiLPkGhiz7p5I8+J5WZPsMJqD4Anb4+vGvpPlenFT9EgFg/AACAP/s4xz4M0hG9mHkBPy5xN73YhwS/XDUqv7RxAb/4lhc/AACAPzUciT/aUDg+IsuOPl0mgD8AAAAAOJiOPha6kT7d9pc+tBqiPmvSsD7pX8Y+kWTnPtu/ED8kjUw/AACAPw3kJz7ptgQ93MrePppAoz3PbxK//b9/P6BqEr6I0uC/AAAAALxnkT8AwNI3rKwOPg9gSr8AAAAAnpiVPlcmmD53+p4+HDyoPsF8tj6OtM4+2MHxPgmoFD/nVFE/AACAP6p7hT5rXhi9uOyVPmY0fr1uGZk9VgS+veKEI78AAAAAAACAP/59ij8uxqi+TuD6PgEAgD8AAAAA0WibPv1Umz5pSJ4+bA6lPtRRsD7s/ME+ZFPgPgpGCT8M3Do/AACAP39TaT7+KJk9VG6yPlKKaj14hAa//n9kP2BwUr4FAIC/AACAP2nAgz92QTq+YHShPQQAgL8AAIA/stmcPsPenj7dwaQ+P5KvPj5YwT6HLNo+s3ECP3Z6Ij+481U/AACAP1o7Az+d1DI8Gq62PnhqojuhC0i/U19Jv6huW74eHR4/AAAAAEwOkT8AAAAA/PcmP/v/f78AAAAAeZONPhMvjz7qMZQ+iDqdPp6Jqz7/fcE+0MHjPmdEDj+fWkM/AACAP0mvWT4QihK+/RwIP3BCFTxep06/AAAAAJpboT68UmY/AACAP79EkT8AAAAAQNgSPvv/f78AAAAArRaPPvA8kD7nRpU+i36gPgawsj4DB88+IGv3PuChGT+drE0/AACAPwtaDz+U5Z+82jHUPuBG1zwU/Qy/deUfvzij6L7whQY/AACAPy4bkT8AAAAAUEwAPwEAgD8AAAAA0SqSPn0Jkz6Pm5Y+iM+ePi7VrD7Oo8A+CNXhPptKDT8Y4EQ/AACAP+5KnD76qKI80KbNPoYuYL3iROi+AwCAPzy1r74AAIC/AAAAAJQqjj+qYHC+eLXIPfz/fz8AAAAAiQKRPuBukT5NCZc+kEShPqhHrj7cOMI+p0jiPrtWDj8DHT4/AACAP19QBD/XeEA8g5u9Ps/cfr1Tj6y+AACAP3TZIb+UMje/AACAPxJXZT9HK5k+QPNIvfz/fz8AAAAAqtOPPr1ikj6QYJg+c6qhPiSisD7z2sc+bMfqPqADFD+6rFI/AACAP+RDTT7T0oi9FLADPywKMT3HQh6/tZcZv9Aotj0BAIA/AAAAACrCjT8AAAAA4DztPvv/f78AAAAAtviWPteBmT6R+J8+7dmpPhkBuT7Oms8+Kkv3PvKxGj9JUl0/AACAP0uVQD4K7py9nhARP4PKBzqvcCW/sl0fv2jIhT0LCYI/AAAAANHOjz8AENg4KGApPiWlf78AAAAA5jKSPvDbkz4WPpk+dECjPiidtD5qz88+mM71PrtjGD/SCUU/AACAP25vgD6/UIM9nFXaPsiwJT0G2ue+1MeRPXj7mr4jNX++AAAAAPtTeD8BURO/YPCPvVvRKj4AAIA/l4ijPiOZpj7UHa4+HtC4Pr8dyj56+eM+XCIDP3ZtGz+wgUc/AACAP1UHFT4ccWg92UyKPrqnkD06yaq+9f9/P/TYxb79/3+/AAAAAM+Hgj9/LIG+gCw6vAAAgL8AAAAAmw6uPqMIsD7LMbY++0zBPnjk0j5M4u0+SgEMPyDoLj/qTmw/AACAPzXAZz60cZG8zoS8PhPeo72oGv07owLpPrqrLb9bVAy/AACAPxDujD8AAAAAgKn4Pf3/fz8AAAAAeQebPmilnT5ZaKM+0T+tPooCvT5iadU+R8v9Pl3KHz93zHU/AACAP3+yuLx/WLO8AcaDvDskn70Kvaw+RN2NvkDK37yVu/Y8AAAAADK0MD/+/38/eFgUvnPFQT8AAAAAN5PePk0a4T4W++g+zy73PtLWBj/IGBg/+AczP16pXz8AAIA/AACAP85qRD5x8GY9Cve8Pu3FOz2WYbK+trgCPxgQ7r4AAIC/AAAAAHUOhT+3Npi+APNPO/cMEL8AAAAAFOWcPiWhnz52Vac+Q3y0Po5hyD6OMOI+eh8HP20pKz+6aXA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGh2mP5pJyMAWyUTd4EjAF0lEdAwBhH5wfhdnV9lChoBkdAcbnfEXLvC2gHTcIEaAhHQMAZG+Kjzqd1fZQoaAZHQHGbj+BH09RoB03UBGgIR0DAGa1vn8sMdX2UKGgGR0BxjwZHd43WaAdNzgRoCEdAwBn+SpR4yHV9lChoBkdAcXlcJMQEp2gHTfwEaAhHQMAarq4QSSN1fZQoaAZHQHGnS5qdpZhoB03MBGgIR0DAGyiQHRkVdX2UKGgGR0BxpHy3CsOoaAdNwARoCEdAwBs5RplBhXV9lChoBkdAcaA6Tnq3VmgHTd8EaAhHQMAbznm7rcF1fZQoaAZHQHGq8I3R5TtoB03QBGgIR0DAHH5tUGVzdX2UKGgGR0Bx0mmYSg5BaAdNqQRoCEdAwByIudwvQHV9lChoBkdAcVL1zhgmZ2gHTSEFaAhHQMActzOX3QF1fZQoaAZHQHHKy1Aqur9oB02wBGgIR0DAHM3oTwlTdX2UKGgGR0BxnUubqhUSaAdN0QRoCEdAwB1pzwMH8nV9lChoBkdAcWqs4ku6E2gHTQ8FaAhHQMAdqYe9zwN1fZQoaAZHQHHFk1hsqKBoB024BGgIR0DAHfNfiPyTdX2UKGgGR0Bx0xqsU7CBaAdNuARoCEdAwB5aLUkOZ3V9lChoBkdAcZElD4QBgmgHTeQEaAhHQMAedYyO7xx1fZQoaAZHQHGwtmL9/BpoB03MBGgIR0DAHo/Ue+23dX2UKGgGR0BxYT5i3G4raAdNCwVoCEdAwB631PFefXV9lChoBkdAcbycTJyQxWgHTcgEaAhHQMAevEUCaJB1fZQoaAZHQHGdylN1yNpoB03SBGgIR0DAHsL+zdDZdX2UKGgGR0BxqQD4gzP9aAdN1QRoCEdAwB9IoHcDbXV9lChoBkdAcbZnUlRgqmgHTdkEaAhHQMAfcwSi/PB1fZQoaAZHQHFdF5B1LapoB035BGgIR0DAIE3aDf3wdX2UKGgGR0Bx2APDpC8faAdNlQRoCEdAwCBac1fmcXV9lChoBkdAcYfNlRP422gHTeQEaAhHQMAhBaPCEYh1fZQoaAZHQHGbQla8pTdoB03pBGgIR0DAIU30mMOxdX2UKGgGR0Bx0F/I8yN5aAdNuQRoCEdAwCGB9XtBwHV9lChoBkdAca0tpVS4v2gHTdAEaAhHQMAhmm0E5hl1fZQoaAZHQHGXViz9jwxoB03wBGgIR0DAIduJSBK+dX2UKGgGR0BxokzAN5MUaAdN2ARoCEdAwCKWk4WDYnV9lChoBkdAcYpLJ0W/J2gHTeUEaAhHQMAjp/HYHxB1fZQoaAZHQHHWNX5nDixoB02nBGgIR0DAJH5VhkRSdX2UKGgGR0Bxk00pEx7BaAdN2ARoCEdAwCSOcENe+nV9lChoBkdAccTftx+8XmgHTawEaAhHQMAksuhsZYR1fZQoaAZHQHFFYzi0fHRoB00vBWgIR0DAJL4bdadMdX2UKGgGR0BxnYEQoTf0aAdN1wRoCEdAwCWV0TURWnV9lChoBkdAcadPEKmbb2gHTckEaAhHQMAmANLUTct1fZQoaAZHQHHWGLk0aZRoB02sBGgIR0DAJmXObAk+dX2UKGgGR0Bxcg8B+4LDaAdNAAVoCEdAwCZye2d/a3V9lChoBkdAcY8NayKNymgHTdcEaAhHQMAoRAZTAFh1fZQoaAZHQHGrpb+tKZloB03FBGgIR0DAKFKwY+B6dX2UKGgGR0Bxuger+5vtaAdNxgRoCEdAwChq2606YHV9lChoBkdAcXTtIkJKJ2gHTfYEaAhHQMAogcafjCJ1fZQoaAZHQHHGpjYqXnhoB02oBGgIR0DAKQ0VYZEVdX2UKGgGR0BxlNZdOZb7aAdN4wRoCEdAwEDXE2pAEHV9lChoBkdAcZ1enAIppmgHTeoEaAhHQMBBbghB7eF1fZQoaAZHQHG2VKbrkbRoB024BGgIR0DAQW+gJ1JUdX2UKGgGR0Bxp1I/Z/TcaAdNzARoCEdAwEGyFAVwgnV9lChoBkdAccj/o7muDGgHTb8EaAhHQMBB21h9b5d1fZQoaAZHQHGl2orFwUBoB03NBGgIR0DAQgOxB3RpdX2UKGgGR0BxrWwgTyrgaAdN2ARoCEdAwEI2e05U+HV9lChoBkdAcZYY3vQWvmgHTd0EaAhHQMBDHZ5qubJ1fZQoaAZHQHFGrhvR7Z5oB002BWgIR0DAQyYr8R+SdX2UKGgGR0Bxsoe0Xxe+aAdNwwRoCEdAwEPog00m+nV9lChoBkdAcYfYvnKW9mgHTQYFaAhHQMBD6NUXHip1fZQoaAZHQHGC1urIYFdoB03JBGgIR0DAQ/VXzUZvdX2UKGgGR0BxyOE12q1gaAdNqQRoCEdAwESIC4Bmw3V9lChoBkdAca+LBKtga2gHTbgEaAhHQMBEj7FsHjZ1fZQoaAZHQHGRxYA80UJoB03qBGgIR0DARKSKJl8PdX2UKGgGR0BxcIWWQfZFaAdN8wRoCEdAwETfdEb5unV9lChoBkdAcaPnXd0q6WgHTcgEaAhHQMBFDS6tknV1fZQoaAZHwDg9eD3/PxBoB02QAWgIR0DARY56QeV+dX2UKGgGR0BxmQBDG96DaAdN3gRoCEdAwEX0/zreInV9lChoBkdAcaid6sySFGgHTc4EaAhHQMBG47G3nZF1fZQoaAZHQHHQVwDNhVloB03XBGgIR0DAR97M7lq8dX2UKGgGR0BxpqXE61b8aAdNwgRoCEdAwEfj9qk/KXV9lChoBkdAcX/Th5xBFGgHTfUEaAhHQMBIQ0U47zV1fZQoaAZHQHGJYAwPAfxoB00QBWgIR0DASEZqVQhwdX2UKGgGR0BxewGnn+yaaAdN/QRoCEdAwElaXKKYRnV9lChoBkdAcZnPAfuCw2gHTfEEaAhHQMBJ3C1qnFZ1fZQoaAZHQHGuiVbA1vVoB03HBGgIR0DASe9Net0WdX2UKGgGR0BxYooa1kUcaAdNDAVoCEdAwErmL5RCQnV9lChoBkdAcaducMEzPGgHTdoEaAhHQMBLliSA6Ml1fZQoaAZHQHGsGf029+RoB03MBGgIR0DAS689ZA6ddX2UKGgGR0BxpE04zabnaAdN1wRoCEdAwEuwxzq8lHV9lChoBkdAcc94hUzbe2gHTbMEaAhHQMBMCQiA2AJ1fZQoaAZHQHHiFOsT37FoB02wBGgIR0DATDxAQg9vdX2UKGgGR0BxYLKJVKf4aAdNKAVoCEdAwExDrWRRuXV9lChoBkdAcaYWTHKfWmgHTb8EaAhHQMBNOTpxFRZ1fZQoaAZHQHG9GPtD2J1oB02xBGgIR0DATUQWDYh/dX2UKGgGR0BxWPSWqtHQaAdNDwVoCEdAwE2ZyjHn2nV9lChoBkdAcXorLhaTwGgHTf8EaAhHQMBOBip3os91fZQoaAZHQHFtPuXu3MJoB00BBWgIR0DATiclzEJjdX2UKGgGR0Bxez0HyEteaAdN9QRoCEdAwE6jRO1v23V9lChoBkdAcajwdKdxyWgHTc4EaAhHQMBOvmetjkN1fZQoaAZHQHGWjsQd0aJoB03ZBGgIR0DATtJXr+o+dX2UKGgGR0BxWYwlByCGaAdNHAVoCEdAwE7z7sv7FnV9lChoBkdAcWuWGyon8mgHTfcEaAhHQMBPGVQyhzx1fZQoaAZHQHG94re67NBoB03MBGgIR0DAT1ctNBWxdX2UKGgGR0BxqoiA2AG0aAdNyARoCEdAwE9mOI68x3V9lChoBkdAcYMSzgMtsmgHTegEaAhHQMBPji0ngHh1fZQoaAZHQHG8Axi5NGpoB02/BGgIR0DAT7sry1/ldX2UKGgGR0BxoXEuQIUraAdN3ARoCEdAwE/KN5t3wHV9lChoBkdAcZ+vy9VWCGgHTcEEaAhHQMBQdXCj1wp1fZQoaAZHQHGdcuez2OBoB03nBGgIR0DAUa0RJ2+xdX2UKGgGR0BxUK9XcQAdaAdNJwVoCEdAwFM+x3V093V9lChoBkdAca0TvRZ2ZGgHTboEaAhHQMBTWWqLjxV1fZQoaAZHQHHCZPVNHpdoB03RBGgIR0DAU45hBqsVdX2UKGgGR0BxvS9i+cpcaAdNvwRoCEdAwFPHMTN+s3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 930, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVRgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgUSxiFlGgYdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoECiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLGIWUaBh0lFKUjARoaWdolGgQKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksYhZRoGHSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVoQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 32, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (337 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 302.2438413669588, "std_reward": 1.270118452062183, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-06T18:21:58.056267"}