Yanqing0327
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- UCSC-VLAA/Recap-DataComp-1B
|
5 |
+
---
|
6 |
+
# Model Card for ViT-H-14-CLIPS-224-Recap-DataComp-1B
|
7 |
+
|
8 |
+
## Model Details
|
9 |
+
|
10 |
+
<!-- Provide the basic links for the model. -->
|
11 |
+
|
12 |
+
- **Repository:** https://github.com/UCSC-VLAA/CLIPS
|
13 |
+
- **Paper:** https://arxiv.org/abs/2411.16828
|
14 |
+
- **Project Page:** https://ucsc-vlaa.github.io/CLIPS/
|
15 |
+
|
16 |
+
## Model Usage
|
17 |
+
### With OpenCLIP
|
18 |
+
#### Note: Due to differences in the default epsilon values for LayerNorm initialization between JAX and PyTorch, we made some modifications in open_clip/transformer.py to align the model's behavior. Refer to https://github.com/UCSC-VLAA/CLIPS for more details.
|
19 |
+
```
|
20 |
+
import torch
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from urllib.request import urlopen
|
23 |
+
from PIL import Image
|
24 |
+
from open_clip import create_model_from_pretrained, get_tokenizer
|
25 |
+
|
26 |
+
model, preprocess = create_model_from_pretrained('hf-hub:UCSC-VLAA/ViT-H-14-CLIPS-224-Recap-DataComp-1B')
|
27 |
+
tokenizer = get_tokenizer('hf-hub:UCSC-VLAA/ViT-H-14-CLIPS-224-Recap-DataComp-1B')
|
28 |
+
|
29 |
+
image = Image.open(urlopen(
|
30 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
31 |
+
))
|
32 |
+
image = preprocess(image).unsqueeze(0)
|
33 |
+
|
34 |
+
text = tokenizer(["a diagram", "a dog", "a cat", "a beignet"], context_length=model.context_length)
|
35 |
+
|
36 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
37 |
+
image_features = model.encode_image(image)
|
38 |
+
text_features = model.encode_text(text)
|
39 |
+
image_features = F.normalize(image_features, dim=-1)
|
40 |
+
text_features = F.normalize(text_features, dim=-1)
|
41 |
+
|
42 |
+
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
43 |
+
|
44 |
+
print("Label probs:", text_probs) # prints: [[0., 0., 0., 1.0]]
|
45 |
+
```
|