chiyuzhang
commited on
Commit
•
fa2021d
1
Parent(s):
c418377
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- social media
|
8 |
+
- contrastive learning
|
9 |
+
---
|
10 |
+
# Contrastive Learning of Sociopragmatic Meaning in Social Media
|
11 |
+
|
12 |
+
<p align="center"> <a href="https://chiyuzhang94.github.io/" target="_blank">Chiyu Zhang</a>, <a href="https://mageed.arts.ubc.ca/" target="_blank">Muhammad Abdul-Mageed</a>, <a href="https://ganeshjawahar.github.io/" target="_blank">Ganesh Jarwaha</a></p>
|
13 |
+
<p align="center" float="left">
|
14 |
+
|
15 |
+
<p align="center">Publish at Findings of ACL 2023</p>
|
16 |
+
|
17 |
+
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)]()
|
18 |
+
[![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg)]()
|
19 |
+
|
20 |
+
|
21 |
+
<p align="center" width="100%">
|
22 |
+
<a><img src="https://github.com/UBC-NLP/infodcl/blob/master/images/infodcl_vis.png?raw=true" alt="Title" style="width: 90%; min-width: 300px; display: block; margin: auto;"></a>
|
23 |
+
</p>
|
24 |
+
Illustration of our proposed InfoDCL framework. We exploit distant/surrogate labels (i.e., emojis) to supervise two contrastive losses, corpus-aware contrastive loss (CCL) and Light label-aware contrastive loss (LCL-LiT). Sequence representations from our model should keep the cluster of each class distinguishable and preserve semantic relationships between classes.
|
25 |
+
|
26 |
+
## Checkpoints of Models Pre-Trained with InfoDCL
|
27 |
+
* InfoDCL-RoBERTa trained with TweetEmoji-EN: https://huggingface.co/UBC-NLP/InfoDCL-emoji
|
28 |
+
* InfoDCL-RoBERTa trained with TweetHashtag-EN: https://huggingface.co/UBC-NLP/InfoDCL-hashtag
|
29 |
+
|
30 |
+
## Model Performance
|
31 |
+
|
32 |
+
<p align="center" width="100%">
|
33 |
+
<a><img src="https://github.com/UBC-NLP/infodcl/blob/master/images/main_table.png?raw=true" alt="main table" style="width: 95%; min-width: 300px; display: block; margin: auto;"></a>
|
34 |
+
</p>
|
35 |
+
Fine-tuning results on our 24 Socio-pragmatic Meaning datasets (average macro-F1 over five runs).
|