TwentyNine
commited on
Commit
•
1507674
1
Parent(s):
0ad3f4b
Update README.md
Browse files
README.md
CHANGED
@@ -3,9 +3,76 @@ language:
|
|
3 |
- ja
|
4 |
- ain
|
5 |
pipeline_tag: translation
|
|
|
6 |
---
|
7 |
|
8 |
-
|
9 |
This model is only an preliminary experimental result and is not suitable for any sort of serious use. This model's capability is at best extremely limited and unreliable.
|
10 |
|
11 |
-
That said, look forward to good things to come. This is my debut to the field of Ainu NLP.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
- ja
|
4 |
- ain
|
5 |
pipeline_tag: translation
|
6 |
+
license: cc-by-nc-4.0
|
7 |
---
|
8 |
|
9 |
+
# Disclaimer
|
10 |
This model is only an preliminary experimental result and is not suitable for any sort of serious use. This model's capability is at best extremely limited and unreliable.
|
11 |
|
12 |
+
That said, look forward to good things to come. This is my debut to the field of Ainu NLP.
|
13 |
+
|
14 |
+
# Acknowledgements
|
15 |
+
I am indebted to [Michal Ptaszynski](https://huggingface.co/ptaszynski) for his guidance and encouragement, [Karol Nowakowski](https://huggingface.co/karolnowakowski) for his work to compile an expansive parallel corpus, [David Dale](https://huggingface.co/cointegrated) for his [Medium article](https://cointegrated.medium.com/how-to-fine-tune-a-nllb-200-model-for-translating-a-new-language-a37fc706b865) that helped me to quickly and smoothly take this first step.
|
16 |
+
|
17 |
+
# How to use this model
|
18 |
+
The following is adapted from [slone/nllb-rus-tyv-v1](https://huggingface.co/slone/nllb-rus-tyv-v1).
|
19 |
+
|
20 |
+
```Python
|
21 |
+
# the version of transformers is important!
|
22 |
+
!pip install sentencepiece transformers==4.33
|
23 |
+
import torch
|
24 |
+
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM
|
25 |
+
|
26 |
+
def fix_tokenizer(tokenizer, new_lang='ain_Latn'):
|
27 |
+
""" Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """
|
28 |
+
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
|
29 |
+
tokenizer.lang_code_to_id[new_lang] = old_len-1
|
30 |
+
tokenizer.id_to_lang_code[old_len-1] = new_lang
|
31 |
+
# always move "mask" to the last position
|
32 |
+
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
|
33 |
+
|
34 |
+
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
|
35 |
+
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
|
36 |
+
if new_lang not in tokenizer._additional_special_tokens:
|
37 |
+
tokenizer._additional_special_tokens.append(new_lang)
|
38 |
+
# clear the added token encoder; otherwise a new token may end up there by mistake
|
39 |
+
tokenizer.added_tokens_encoder = {}
|
40 |
+
tokenizer.added_tokens_decoder = {}
|
41 |
+
|
42 |
+
MODEL_URL = "TwentyNine/nllb-jpn-ain-v1"
|
43 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_URL)
|
44 |
+
tokenizer = NllbTokenizer.from_pretrained(MODEL_URL)
|
45 |
+
fix_tokenizer(tokenizer)
|
46 |
+
|
47 |
+
def translate(
|
48 |
+
text,
|
49 |
+
model,
|
50 |
+
tokenizer,
|
51 |
+
src_lang='jpn_Jpan',
|
52 |
+
tgt_lang='ain_Latn',
|
53 |
+
max_length='auto',
|
54 |
+
num_beams=4,
|
55 |
+
n_out=None,
|
56 |
+
**kwargs
|
57 |
+
):
|
58 |
+
tokenizer.src_lang = src_lang
|
59 |
+
encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
60 |
+
if max_length == 'auto':
|
61 |
+
max_length = int(32 + 2.0 * encoded.input_ids.shape[1])
|
62 |
+
model.eval()
|
63 |
+
generated_tokens = model.generate(
|
64 |
+
**encoded.to(model.device),
|
65 |
+
forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang],
|
66 |
+
max_length=max_length,
|
67 |
+
num_beams=num_beams,
|
68 |
+
num_return_sequences=n_out or 1,
|
69 |
+
**kwargs
|
70 |
+
)
|
71 |
+
out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
72 |
+
if isinstance(text, str) and n_out is None:
|
73 |
+
return out[0]
|
74 |
+
return
|
75 |
+
|
76 |
+
translate("肉が食べたいな。", model=model, tokenizer=tokenizer)
|
77 |
+
# 'kam c=e rusuy na.'
|
78 |
+
```
|