|
import json |
|
from concurrent.futures import ThreadPoolExecutor |
|
from typing import Dict, List, Optional, Union |
|
|
|
import requests |
|
|
|
from opencompass.registry import MODELS |
|
from opencompass.utils.logging import get_logger |
|
from opencompass.utils.prompt import PromptList |
|
|
|
from .base_api import BaseAPIModel |
|
|
|
PromptType = Union[PromptList, str] |
|
|
|
|
|
@MODELS.register_module() |
|
class KrGPT(BaseAPIModel): |
|
is_api: bool = True |
|
|
|
def __init__( |
|
self, |
|
path: str = 'KrGPT', |
|
url: str = 'http://101.69.162.5:9300/v1/chat/completions', |
|
max_seq_len: int = 2048, |
|
meta_template: Optional[Dict] = None, |
|
retry: int = 2, |
|
generation_kwargs: Optional[Dict] = dict(), |
|
): |
|
super().__init__( |
|
path=path, |
|
max_seq_len=max_seq_len, |
|
meta_template=meta_template, |
|
retry=retry, |
|
generation_kwargs=generation_kwargs, |
|
) |
|
self.logger = get_logger() |
|
self.url = url |
|
self.generation_kwargs = generation_kwargs |
|
self.max_out_len = self.generation_kwargs.get('max_new_tokens', 1024) |
|
|
|
def generate(self, inputs: List[str], max_out_len: int, |
|
**kwargs) -> List[str]: |
|
"""Generate results given a list of inputs. |
|
|
|
Args: |
|
inputs (List[str]): A list of strings or PromptDicts. |
|
The PromptDict should be organized in OpenCompass' |
|
API format. |
|
max_out_len (int): The maximum length of the output. |
|
|
|
Returns: |
|
List[str]: A list of generated strings. |
|
""" |
|
|
|
with ThreadPoolExecutor() as executor: |
|
results = list( |
|
executor.map(self._generate, inputs, |
|
[self.max_out_len] * len(inputs))) |
|
return results |
|
|
|
def _generate(self, |
|
input: PromptType, |
|
max_out_len: int, |
|
temperature: float = 0.0) -> str: |
|
"""Generate results given a list of inputs. |
|
|
|
Args: |
|
inputs (PromptType): A string or PromptDict. |
|
The PromptDict should be organized in OpenCompass' |
|
API format. |
|
max_out_len (int): The maximum length of the output. |
|
temperature (float): What sampling temperature to use, |
|
between 0 and 2. Higher values like 0.8 will make the output |
|
more random, while lower values like 0.2 will make it more |
|
focused and deterministic. |
|
|
|
Returns: |
|
str: The generated string. |
|
""" |
|
assert isinstance(input, (str, PromptList)) |
|
|
|
if isinstance(input, str): |
|
messages = [{'role': 'user', 'content': input}] |
|
else: |
|
messages = [] |
|
for item in input: |
|
msg = {'content': item['prompt']} |
|
if item['role'] == 'HUMAN': |
|
msg['role'] = 'user' |
|
elif item['role'] == 'BOT': |
|
msg['role'] = 'assistant' |
|
elif item['role'] == 'SYSTEM': |
|
msg['role'] = 'system' |
|
messages.append(msg) |
|
|
|
max_num_retries = 0 |
|
while max_num_retries < self.retry: |
|
header = {'content-type': 'application/json'} |
|
|
|
try: |
|
data = dict(messages=messages) |
|
raw_response = requests.post(self.url, |
|
headers=header, |
|
data=json.dumps(data)) |
|
except requests.ConnectionError: |
|
self.logger.error('Got connection error, retrying...') |
|
continue |
|
try: |
|
response = raw_response.json() |
|
except requests.JSONDecodeError: |
|
self.logger.error('JsonDecode error, got', |
|
str(raw_response.content)) |
|
continue |
|
try: |
|
return response['choices'][0]['message']['content'].strip() |
|
except KeyError: |
|
self.logger.error('Find error message in response: ', |
|
str(response)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
max_num_retries += 1 |
|
|
|
raise RuntimeError('Calling OpenAI failed after retrying for ' |
|
f'{max_num_retries} times. Check the logs for ' |
|
'details.') |
|
|