TwT-6's picture
Upload 2667 files
256a159 verified
from opencompass.multimodal.models.instructblip import (
InstructBlipVQAPromptConstructor,
InstructBlipVQAPostProcessor,
)
# dataloader settings
val_pipeline = [
dict(type='mmpretrain.LoadImageFromFile'),
dict(type='mmpretrain.ToPIL', to_rgb=True),
dict(type='mmpretrain.torchvision/Resize',
size=(224, 224),
interpolation=3),
dict(type='mmpretrain.torchvision/ToTensor'),
dict(type='mmpretrain.torchvision/Normalize',
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711)),
dict(
type='mmpretrain.PackInputs',
algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'],
meta_keys=['question_id', 'image_id'],
)
]
dataset = dict(
type='mmpretrain.TextVQA',
data_root='data/textvqa',
ann_file='annotations/TextVQA_0.5.1_val.json',
pipeline=val_pipeline,
data_prefix='images/train_images',
)
instruct_blip_textvqa_dataloader = dict(batch_size=1,
num_workers=4,
dataset=dataset,
collate_fn=dict(type='pseudo_collate'),
sampler=dict(type='DefaultSampler',
shuffle=False))
# model settings
instruct_blip_textvqa_model = dict(
type='blip2-vicuna-instruct',
prompt_constructor=dict(type=InstructBlipVQAPromptConstructor),
post_processor=dict(type=InstructBlipVQAPostProcessor),
freeze_vit=True,
low_resource=False,
llm_model='/path/to/vicuna-7b/',
max_output_txt_len=10,
)
# evaluation settings
instruct_blip_textvqa_evaluator = [dict(type='mmpretrain.VQAAcc')]
instruct_blip_load_from = '/path/to/instruct_blip_vicuna7b_trimmed.pth'