|
from opencompass.openicl.icl_prompt_template import PromptTemplate |
|
from opencompass.openicl.icl_retriever import ZeroRetriever |
|
from opencompass.openicl.icl_inferencer import PPLInferencer |
|
from opencompass.openicl.icl_evaluator import AccEvaluator |
|
from opencompass.datasets import HFDataset |
|
|
|
afqmc_reader_cfg = dict( |
|
input_columns=['sentence1', 'sentence2'], |
|
output_column='label', |
|
test_split='train') |
|
|
|
afqmc_infer_cfg = dict( |
|
prompt_template=dict( |
|
type=PromptTemplate, |
|
template={ |
|
0: |
|
dict(round=[ |
|
dict( |
|
role="HUMAN", |
|
prompt= |
|
"语句一:“{sentence1}”\n语句二:“{sentence2}”\n语句一与语句二是关于蚂蚁金融产品的疑问,两者所询问的内容是否完全一致?" |
|
), |
|
dict(role="BOT", prompt="不完全一致") |
|
]), |
|
1: |
|
dict(round=[ |
|
dict( |
|
role="HUMAN", |
|
prompt= |
|
"语句一:“{sentence1}”\n语句二:“{sentence2}”\n语句一与语句二是关于蚂蚁金融产品的疑问,两者所询问的内容是否完全一致?" |
|
), |
|
dict(role="BOT", prompt="完全一致") |
|
]), |
|
}), |
|
retriever=dict(type=ZeroRetriever), |
|
inferencer=dict(type=PPLInferencer)) |
|
|
|
afqmc_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) |
|
|
|
afqmc_datasets = [ |
|
dict( |
|
type=HFDataset, |
|
abbr='afqmc-dev', |
|
path='json', |
|
data_files='./data/CLUE/AFQMC/dev.json', |
|
split='train', |
|
reader_cfg=afqmc_reader_cfg, |
|
infer_cfg=afqmc_infer_cfg, |
|
eval_cfg=afqmc_eval_cfg), |
|
] |
|
|