TwT-6's picture
Upload 2667 files
256a159 verified
raw
history blame
8.46 kB
"""MDL Retriever."""
from typing import List, Optional
import numpy as np
import torch
import tqdm
from transformers import AutoModelForCausalLM
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever.icl_topk_retriever import TopkRetriever
from opencompass.openicl.utils.logging import get_logger
from opencompass.registry import ICL_PROMPT_TEMPLATES, ICL_RETRIEVERS
logger = get_logger(__name__)
@ICL_RETRIEVERS.register_module()
class MDLRetriever(TopkRetriever):
"""MDL Retriever, subclass of `TopkRetriever`. MDL is a abbreviation of
Minimum Description Length, specially designed for ppl evaluation. You may
refer to the paper for more details: https://arxiv.org/pdf/2212.10375.pdf.
Args:
dataset (`BaseDataset`): Any BaseDataset instances.
Attributes of ``reader``, ``train`` and ``test`` will be used.
ice_separator (`Optional[str]`): The separator between each in-context
example template when origin `PromptTemplate` is provided. Defaults
to '\n'.
ice_eos_token (`Optional[str]`): The end of sentence token for
in-context example template when origin `PromptTemplate` is
provided. Defaults to '\n'.
ice_num (`Optional[int]`): The number of in-context example template
when origin `PromptTemplate` is provided. Defaults to 1.
sentence_transformers_model_name (`Optional[str]`): The name of the
sentence transformers model. Defaults to 'all-mpnet-base-v2'.
tokenizer_name (`Optional[str]`): The name of the tokenizer. Defaults
to 'gpt2-xl'.
batch_size (`Optional[int]`): The batch size for the dataloader.
Defaults to 1.
candidate_num (`Optional[int]`): The number of candidates to retrieve
for each example. Defaults to 1.
ce_model_name (`Optional[str]`): The name of the model for calculating
MDL. Defaults to 'gpt2-xl'.
select_time (`Optional[int]`): The number of times to select MDL.
Defaults to 5.
ice_template (`Optional[PromptTemplate]`): The template for in-context
example. Defaults to None.
prompt_template (`Optional[PromptTemplate]`): The template for prompt.
Defaults to None.
labels (`Optional[List]`): The labels for calculating MDL. Defaults to
None.
seed (`Optional[int]`): The seed for random. Defaults to 1.
"""
metric_model = None
def __init__(self,
dataset,
ice_separator: Optional[str] = '\n',
ice_eos_token: Optional[str] = '\n',
ice_num: Optional[int] = 1,
sentence_transformers_model_name: Optional[
str] = 'all-mpnet-base-v2',
tokenizer_name: Optional[str] = 'gpt2-xl',
batch_size: Optional[int] = 1,
candidate_num: Optional[int] = 1,
ce_model_name: Optional[str] = 'gpt2-xl',
select_time: Optional[int] = 5,
ice_template: Optional[PromptTemplate] = None,
prompt_template: Optional[PromptTemplate] = None,
labels: Optional[List] = None,
seed: Optional[int] = 1) -> None:
super().__init__(dataset, ice_separator, ice_eos_token, ice_num,
sentence_transformers_model_name, tokenizer_name,
batch_size)
self.ce_model_name = ce_model_name
self.candidate_num = candidate_num
self.select_time = select_time
self.ice_template = ICL_PROMPT_TEMPLATES.build(ice_template)
if prompt_template is not None:
self.prompt_template = ICL_PROMPT_TEMPLATES.build(prompt_template)
else:
self.prompt_template = None
self.labels = labels
self.seed = seed
def topk_search(self):
np.random.seed(self.seed)
res_list = self.forward(self.dataloader)
rtr_idx_list = [[] for _ in range(len(res_list))]
logger.info('Retrieving data for test set...')
for entry in tqdm.tqdm(res_list, disable=not self.is_main_process):
idx = entry['metadata']['id']
embed = np.expand_dims(entry['embed'], axis=0)
near_ids = self.index.search(
embed, min(self.candidate_num,
len(self.index_ds)))[1][0].tolist()
candidates = []
mdl_scores = []
for j in range(self.select_time):
if j == 0:
rand_idx_list = near_ids[:self.ice_num]
else:
rand_idx_list = np.random.choice(near_ids,
self.ice_num,
replace=False)
rand_idx_list = [int(i) for i in rand_idx_list]
candidates.append(rand_idx_list)
ice = self.generate_ice(rand_idx_list,
ice_template=self.ice_template)
ice = str(ice)
mask_length = len(
self.tokenizer(ice + self.ice_eos_token,
verbose=False)['input_ids'])
if self.labels is None:
labels = self.get_labels(self.ice_template,
self.prompt_template)
else:
labels = self.labels
prompt_list = []
for label in labels:
prompt = self.generate_label_prompt(
idx, ice, label, self.ice_template,
self.prompt_template)
prompt = str(prompt)
prompt_list.append(prompt)
loss_list = self.cal_ce(prompt_list, mask_length=mask_length)
probs = np.exp(-np.array(loss_list))
normalized_probs = probs / probs.sum(0, keepdims=True)
neg_entropy = -entropy(normalized_probs, label_dim=0)
mdl_scores.append(neg_entropy)
rtr_idx_list[idx] = candidates[mdl_scores.index(max(mdl_scores))]
rtr_idx_list[idx] = [int(i) for i in rtr_idx_list[idx]]
return rtr_idx_list
def retrieve(self):
"""Retrieve the in-context example index for each test example."""
return self.topk_search()
@torch.no_grad()
def cal_ce(self, input_texts: List[str], mask_length=None):
if self.metric_model is None:
logger.info(
f'Load model {self.ce_model_name} for calculating MDL...')
self.metric_model = AutoModelForCausalLM.from_pretrained(
self.ce_model_name)
self.metric_model.to(self.device)
inputs = self.tokenizer(input_texts,
padding=True,
return_tensors='pt',
truncation=True)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
outputs = self.metric_model(**inputs)
shift_logits = outputs.logits[..., :-1, :].contiguous()
shift_labels = inputs['input_ids'][..., 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss(
reduction='none', ignore_index=self.tokenizer.pad_token_id)
shift_logits = shift_logits.view(-1, shift_logits.size(-1))
loss = loss_fct(shift_logits,
shift_labels.view(-1)).view(shift_labels.size())
if mask_length is not None:
mask = torch.cat([
torch.zeros([loss.shape[0], mask_length], dtype=torch.float),
torch.ones([loss.shape[0], loss.shape[-1] - mask_length],
dtype=torch.float)
], -1)
mask = mask.to(self.device)
loss = torch.mul(mask, loss)
lens = (inputs['input_ids'] !=
self.tokenizer.pad_token_id).sum(-1).cpu().numpy()
if mask_length is not None:
lens -= mask_length
ce_loss = loss.sum(-1).cpu().detach().numpy() / lens
return ce_loss
def entropy(probs: np.array, label_dim: int = 0, mask=None):
if mask is None:
return -(probs * np.log(probs)).sum(label_dim)
return -(mask * probs * np.log(probs)).sum(label_dim)