|
from mmengine.config import read_base |
|
from opencompass.models.turbomind import TurboMindModel |
|
|
|
|
|
with read_base(): |
|
|
|
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets |
|
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets |
|
from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets |
|
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets |
|
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets |
|
from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets |
|
|
|
from .summarizers.medium import summarizer |
|
|
|
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) |
|
|
|
|
|
internlm_7b = dict( |
|
type=TurboMindModel, |
|
abbr='internlm-7b-turbomind', |
|
path="internlm/internlm-7b", |
|
engine_config=dict(session_len=2048, |
|
max_batch_size=32, |
|
rope_scaling_factor=1.0), |
|
gen_config=dict(top_k=1, |
|
top_p=0.8, |
|
temperature=1.0, |
|
max_new_tokens=100), |
|
max_out_len=100, |
|
max_seq_len=2048, |
|
batch_size=32, |
|
concurrency=32, |
|
run_cfg=dict(num_gpus=1, num_procs=1), |
|
) |
|
|
|
|
|
internlm_20b = dict( |
|
type=TurboMindModel, |
|
abbr='internlm-20b-turbomind', |
|
path="internlm/internlm-20b", |
|
engine_config=dict(session_len=2048, |
|
max_batch_size=8, |
|
rope_scaling_factor=1.0), |
|
gen_config=dict(top_k=1, top_p=0.8, |
|
temperature=1.0, |
|
max_new_tokens=100), |
|
max_out_len=100, |
|
max_seq_len=2048, |
|
batch_size=8, |
|
concurrency=8, |
|
run_cfg=dict(num_gpus=1, num_procs=1), |
|
) |
|
|
|
models = [internlm_20b] |
|
|