api-demo / opencompass-my-api /tools /case_analyzer.py
TwT-6's picture
Upload 2667 files
256a159 verified
raw
history blame
7.02 kB
import argparse
import copy
import json
import os.path as osp
import mmengine
from mmengine.config import Config, ConfigDict
from mmengine.utils import mkdir_or_exist
from tqdm import tqdm
from opencompass.registry import TEXT_POSTPROCESSORS
from opencompass.utils import build_dataset_from_cfg, get_infer_output_path
def parse_args():
parser = argparse.ArgumentParser(description='Run case analyzer')
parser.add_argument('config', help='Train config file path')
parser.add_argument(
'-f',
'--force',
help='Force to run the task even if the results already exist',
action='store_true',
default=False)
parser.add_argument('-w',
'--work-dir',
help='Work path, all the outputs will be '
'saved in this path, including the slurm logs, '
'the evaluation results, the summary results, etc.'
'If not specified, the work_dir will be set to '
'./outputs/default.',
default=None,
type=str)
args = parser.parse_args()
return args
class BadcaseShower:
""""""
def __init__(self, cfg: ConfigDict) -> None:
self.cfg = cfg
self.model_cfg = copy.deepcopy(self.cfg['model'])
self.dataset_cfg = copy.deepcopy(self.cfg['dataset'])
self.work_dir = self.cfg.get('work_dir')
# Load Dataset
self.eval_cfg = self.dataset_cfg.get('eval_cfg')
self.ds_split = self.eval_cfg.get('ds_split', None)
self.ds_column = self.eval_cfg.get('ds_column')
def run(self):
filename = get_infer_output_path(
self.model_cfg, self.dataset_cfg,
osp.join(self.work_dir, 'predictions'))
root, ext = osp.splitext(filename)
partial_filename = root + '_0' + ext
if not osp.exists(osp.realpath(filename)) and not osp.exists(
osp.realpath(partial_filename)):
print(f'{filename} not found')
return
dataset = build_dataset_from_cfg(self.dataset_cfg)
# Postprocess dataset if necessary
if 'dataset_postprocessor' in self.eval_cfg:
def postprocess(sample):
s = sample[self.ds_column]
proc = TEXT_POSTPROCESSORS.get(
self.eval_cfg['dataset_postprocessor']['type'])
sample[self.ds_column] = proc(s)
return sample
dataset = dataset.map(postprocess)
# Load predictions
if osp.exists(osp.realpath(filename)):
preds = mmengine.load(filename)
else:
filename = partial_filename
preds, offset = {}, 0
i = 1
while osp.exists(osp.realpath(filename)):
_preds = mmengine.load(filename)
filename = root + f'_{i}' + ext
i += 1
for _o in range(len(_preds)):
preds[str(offset)] = _preds[str(_o)]
offset += 1
pred_strs = [preds[str(i)]['prediction'] for i in range(len(preds))]
# Postprocess predictions if necessary
if 'pred_postprocessor' in self.eval_cfg:
proc = TEXT_POSTPROCESSORS.get(
self.eval_cfg['pred_postprocessor']['type'])
pred_strs = [proc(s) for s in pred_strs]
if self.ds_split:
references = dataset[self.ds_split][self.ds_column]
else:
references = dataset[self.ds_column]
if len(pred_strs) != len(references):
print('length mismatch')
return
# combine cases
allcase, badcase = [], []
if 'in-context examples' in preds['0']:
# ppl eval
for i, (pred_str,
reference) in enumerate(zip(tqdm(pred_strs), references)):
ref_str = str(reference)
try:
pred_prompt = preds[str(i)]['label: ' +
pred_str]['testing input']
pred_PPL = preds[str(i)]['label: ' + pred_str]['PPL']
ref_prompt = preds[str(i)]['label: ' +
ref_str]['testing input']
ref_PPL = preds[str(i)]['label: ' + ref_str]['PPL']
except KeyError:
continue
item = {
'prediction_prompt': pred_prompt,
'prediction': pred_str,
'prediction_PPL': pred_PPL,
'reference_prompt': ref_prompt,
'reference': ref_str,
'reference_PPL': ref_PPL
}
if pred_str != ref_str:
badcase.append(item)
allcase.append(item)
else:
allcase.append(item)
else:
# gen eval
for i, (pred_str,
reference) in enumerate(zip(tqdm(pred_strs), references)):
ref_str = str(reference)
origin_prompt = preds[str(i)]['origin_prompt']
item = {
'origin_prompt': origin_prompt,
'prediction': pred_str,
'reference': ref_str
}
# FIXME: we now consider all cases as bad cases
badcase.append(item)
allcase.append(item)
# Save result
out_path = get_infer_output_path(
self.cfg['model'], self.cfg['dataset'],
osp.join(self.work_dir, 'case_analysis/bad'))
mkdir_or_exist(osp.split(out_path)[0])
with open(out_path, 'w', encoding='utf-8') as f:
json.dump(badcase, f, indent=4, ensure_ascii=False)
out_path = get_infer_output_path(
self.cfg['model'], self.cfg['dataset'],
osp.join(self.work_dir, 'case_analysis/all'))
mkdir_or_exist(osp.split(out_path)[0])
with open(out_path, 'w', encoding='utf-8') as f:
json.dump(allcase, f, indent=4, ensure_ascii=False)
def dispatch_tasks(cfg, force=False):
for model in cfg['models']:
for dataset in cfg['datasets']:
if force or not osp.exists(
get_infer_output_path(
model, dataset,
osp.join(cfg['work_dir'], 'case_analysis/all'))):
BadcaseShower({
'model': model,
'dataset': dataset,
'work_dir': cfg['work_dir']
}).run()
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# set work_dir
if args.work_dir is not None:
cfg['work_dir'] = args.work_dir
else:
cfg.setdefault('work_dir', './outputs/default')
dispatch_tasks(cfg, force=args.force)
if __name__ == '__main__':
main()