model
Browse files- 1_Pooling/config.json +7 -0
- README.txt +60 -0
- added_tokens.json +1 -0
- config.json +24 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.txt
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Uncased Finnish Sentence BERT model
|
2 |
+
|
3 |
+
Finnish Sentence BERT trained from FinBERT
|
4 |
+
|
5 |
+
## Training
|
6 |
+
|
7 |
+
FinBERT model: TurkuNLP/bert-base-finnish-uncased-v1
|
8 |
+
Data: The data provided [here] (https://turkunlp.org/paraphrase.html), including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative)
|
9 |
+
Pooling: mean pooling
|
10 |
+
Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. [Details on labels] (https://aclanthology.org/2021.nodalida-main.29/)
|
11 |
+
|
12 |
+
## Usage
|
13 |
+
|
14 |
+
The same as in [HuggingFace documentation] (https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens). Either through `SentenceTransformer` or `HuggingFace Transformers`
|
15 |
+
|
16 |
+
### SentenceTransformer
|
17 |
+
|
18 |
+
```
|
19 |
+
from sentence_transformers import SentenceTransformer
|
20 |
+
sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."]
|
21 |
+
|
22 |
+
model = SentenceTransformer('TurkuNLP/sbert-uncased-finnish-paraphrase')
|
23 |
+
embeddings = model.encode(sentences)
|
24 |
+
print(embeddings)
|
25 |
+
```
|
26 |
+
|
27 |
+
### HuggingFace Transformers
|
28 |
+
|
29 |
+
```
|
30 |
+
from transformers import AutoTokenizer, AutoModel
|
31 |
+
import torch
|
32 |
+
|
33 |
+
|
34 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
35 |
+
def mean_pooling(model_output, attention_mask):
|
36 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
37 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
38 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
39 |
+
|
40 |
+
|
41 |
+
# Sentences we want sentence embeddings for
|
42 |
+
sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."]
|
43 |
+
|
44 |
+
# Load model from HuggingFace Hub
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase')
|
46 |
+
model = AutoModel.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase')
|
47 |
+
|
48 |
+
# Tokenize sentences
|
49 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
50 |
+
|
51 |
+
# Compute token embeddings
|
52 |
+
with torch.no_grad():
|
53 |
+
model_output = model(**encoded_input)
|
54 |
+
|
55 |
+
# Perform pooling. In this case, mean pooling.
|
56 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
57 |
+
|
58 |
+
print("Sentence embeddings:")
|
59 |
+
print(sentence_embeddings)
|
60 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "TurkuNLP/bert-base-finnish-uncased-v1",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"transformers_version": "4.4.1",
|
21 |
+
"type_vocab_size": 2,
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 50101
|
24 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.BERT"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb4b16cbfeed535c1ec01bc33d11d178bef1373e51e20d893c1add27abeac658
|
3 |
+
size 498127732
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "TurkuNLP/bert-base-finnish-uncased-v1"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|