|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, PreTrainedModel, PretrainedConfig, AutoModel
|
|
from linformer.attention import LinformerSelfAttention
|
|
import torch
|
|
import math
|
|
from peft import get_peft_model, LoraConfig, TaskType
|
|
import os
|
|
|
|
|
|
|
|
def freeze_model(model):
|
|
for param in model.parameters():
|
|
param.requires_grad = False
|
|
|
|
|
|
|
|
class BERT_Compressor(torch.nn.Module):
|
|
def __init__(self, compr_model_name, compr_rate, compr_linear_type, decoder_hidden_size):
|
|
super().__init__()
|
|
self.model_name = compr_model_name
|
|
self.model = AutoModel.from_pretrained(compr_model_name, torch_dtype=torch.float16)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(compr_model_name, use_fast=True)
|
|
self.compr_rate = compr_rate
|
|
self.compressing_mode = compr_linear_type
|
|
|
|
if self.compressing_mode == 'concat':
|
|
self.linear = torch.nn.Linear(self.model.config.hidden_size*self.compr_rate, decoder_hidden_size)
|
|
elif self.compressing_mode == 'mean':
|
|
self.linear = torch.nn.Linear(self.model.config.hidden_size, decoder_hidden_size)
|
|
self.linear = self.linear.float16()
|
|
|
|
def forward(self, input_ids, attention_mask):
|
|
segment_compress_outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
|
num_embs = math.ceil(input_ids.size(1) / self.compr_rate)
|
|
all_hidden_states_emb = list()
|
|
if self.compressing_mode == 'concat':
|
|
for segment_idx in range(num_embs):
|
|
start_idx = segment_idx * self.compr_rate
|
|
end_idx = (segment_idx + 1) * self.compr_rate
|
|
hidden_state = segment_compress_outputs.hidden_states[-1][:, start_idx:end_idx, :]
|
|
hidden_state_concat = torch.flatten(hidden_state, start_dim=1)
|
|
all_hidden_states_emb.append(hidden_state_concat)
|
|
elif self.compressing_mode == "mean":
|
|
for segment_idx in range(num_embs):
|
|
start_idx = segment_idx * self.compr_rate
|
|
end_idx = (segment_idx + 1) * self.compr_rate
|
|
hidden_state = segment_compress_outputs.hidden_states[-1][:, start_idx:end_idx, :]
|
|
all_hidden_states_emb.append(hidden_state)
|
|
all_hidden_states_emb_cat = torch.stack(all_hidden_states_emb, dim=1)
|
|
transformed_embeds = self.linear(all_hidden_states_emb_cat)
|
|
|
|
if self.compressing_mode == "mean":
|
|
transformed_embeds = torch.mean(transformed_embeds, dim=2)
|
|
|
|
return transformed_embeds
|
|
|
|
|
|
|
|
class COCOMConfig(PretrainedConfig):
|
|
model_type = "COCOM"
|
|
def __init__(self,
|
|
decoder_model_name="meta-llama/Llama-2-7b-chat-hf",
|
|
quantization = 'no',
|
|
generation_top_k = 1,
|
|
sep = False,
|
|
compr_model_name = "bert-base-uncased",
|
|
compr_rate = 64,
|
|
compr_linear_type = 'concat',
|
|
lora = False,
|
|
training_form="both",
|
|
lora_r=16,
|
|
attn_implementation="linformer",
|
|
device_map = "cuda",
|
|
**kwargs):
|
|
super().__init__(**kwargs)
|
|
self.decoder_model_name = decoder_model_name
|
|
self.quantization = quantization
|
|
self.generation_top_k = generation_top_k
|
|
self.sep = sep
|
|
self.compr_model_name = compr_model_name
|
|
self.compr_rate = compr_rate
|
|
self.compr_linear_type = compr_linear_type
|
|
self.lora = lora
|
|
self.training_form = training_form
|
|
self.lora_r = lora_r
|
|
self.attn_implementation = attn_implementation
|
|
self.device_map = device_map
|
|
|
|
|
|
|
|
class COCOM(PreTrainedModel):
|
|
config_class = COCOMConfig
|
|
def __init__(self, cfg):
|
|
super().__init__(cfg)
|
|
attn_impl = cfg.attn_implementation
|
|
|
|
|
|
self.decoder = AutoModelForCausalLM.from_pretrained(
|
|
cfg.decoder_model_name,
|
|
torch_dtype=torch.float16,
|
|
low_cpu_mem_usage=True,
|
|
device_map=cfg.device_map
|
|
)
|
|
|
|
|
|
if attn_impl == 'linformer':
|
|
self._replace_attention_with_linformer()
|
|
|
|
|
|
self.compr = BERT_Compressor(cfg.compr_model_name, cfg.compr_rate, cfg.compr_linear_type, self.decoder.config.hidden_size)
|
|
if cfg.lora:
|
|
self._apply_lora(cfg.lora_r)
|
|
|
|
self.decoder_tokenizer = AutoTokenizer.from_pretrained(cfg.decoder_model_name, use_fast=True, padding_side='left')
|
|
self.decoder_tokenizer.add_special_tokens({'additional_special_tokens': ['<MEM>', '<AE>', '<ENC>', '<SEP>']})
|
|
|
|
def _replace_attention_with_linformer(self):
|
|
|
|
for layer in self.decoder.transformer.h:
|
|
layer.attn = LinformerSelfAttention(
|
|
dim=layer.attn.attn.in_proj_weight.shape[0],
|
|
num_heads=layer.attn.num_attention_heads,
|
|
dropout=0.1,
|
|
n_heads=layer.attn.num_attention_heads,
|
|
d_head=layer.attn.attn.in_proj_weight.shape[0] // layer.attn.num_attention_heads
|
|
)
|
|
|
|
def _apply_lora(self, lora_r):
|
|
|
|
peft_config = LoraConfig(
|
|
task_type="CAUSAL_LM",
|
|
r=lora_r,
|
|
lora_alpha=2 * lora_r,
|
|
target_modules='all-linear',
|
|
lora_dropout=0.1,
|
|
)
|
|
self.decoder = get_peft_model(self.decoder, peft_config)
|
|
|
|
def forward(self, enc_input_ids, enc_attention_mask, dec_input_ids, dec_attention_mask, labels):
|
|
inputs_embeds = self.compress_and_replace_emb(enc_input_ids, enc_attention_mask, dec_input_ids)
|
|
decoder_outputs = self.decoder(inputs_embeds=inputs_embeds, attention_mask=dec_attention_mask, labels=labels)
|
|
return {"loss": decoder_outputs.loss, "logits": decoder_outputs.logits}
|
|
|
|
def generate(self, model_input, max_new_tokens=128):
|
|
device = self.decoder.device
|
|
enc_input_ids, enc_attention_mask, dec_input_ids, dec_attention_mask = model_input['enc_input_ids'], model_input['enc_attention_mask'], model_input['dec_input_ids'], model_input['dec_attention_mask']
|
|
inputs_embeds = self.compress_and_replace_emb(enc_input_ids.to(device), enc_attention_mask.to(device), dec_input_ids.to(device))
|
|
output_ids = self.decoder.generate(
|
|
inputs_embeds=inputs_embeds.to(device),
|
|
attention_mask=dec_attention_mask.to(device),
|
|
do_sample=False,
|
|
top_p=None,
|
|
max_new_tokens=min(max_new_tokens, 4096)
|
|
)
|
|
decoded = self.decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
|
return decoded
|
|
|
|
|