Tsegts-Erdene commited on
Commit
506ea86
1 Parent(s): a142de9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - mn
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: roberta-base-ner-demo
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # roberta-base-ner-demo
20
+
21
+ This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1444
24
+ - Precision: 0.9066
25
+ - Recall: 0.9148
26
+ - F1: 0.9107
27
+ - Accuracy: 0.9794
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 10
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.1657 | 1.0 | 477 | 0.0976 | 0.8844 | 0.8947 | 0.8895 | 0.9692 |
59
+ | 0.0631 | 2.0 | 954 | 0.0917 | 0.8871 | 0.9084 | 0.8976 | 0.9709 |
60
+ | 0.0387 | 3.0 | 1431 | 0.1079 | 0.8978 | 0.9099 | 0.9038 | 0.9714 |
61
+ | 0.0272 | 4.0 | 1908 | 0.1198 | 0.8993 | 0.9119 | 0.9056 | 0.9716 |
62
+ | 0.017 | 5.0 | 2385 | 0.1235 | 0.9038 | 0.9108 | 0.9073 | 0.9783 |
63
+ | 0.007 | 6.0 | 2862 | 0.1272 | 0.9085 | 0.9151 | 0.9118 | 0.9795 |
64
+ | 0.0038 | 7.0 | 3339 | 0.1295 | 0.9064 | 0.9172 | 0.9118 | 0.9796 |
65
+ | 0.0029 | 8.0 | 3816 | 0.1368 | 0.9045 | 0.9167 | 0.9106 | 0.9795 |
66
+ | 0.0019 | 9.0 | 4293 | 0.1425 | 0.9076 | 0.9173 | 0.9124 | 0.9796 |
67
+ | 0.0015 | 10.0 | 4770 | 0.1444 | 0.9066 | 0.9148 | 0.9107 | 0.9794 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.29.2
73
+ - Pytorch 2.0.1+cu118
74
+ - Datasets 2.12.0
75
+ - Tokenizers 0.13.3