TroglodyteDerivations commited on
Commit
593f436
ยท
verified ยท
1 Parent(s): 449f543

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +195 -3
README.md CHANGED
@@ -1,3 +1,195 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ Here's a comprehensive Hugging Face Model Card for your Interactive PyQt5 A* Algorithm Game:
5
+
6
+ ```markdown
7
+ ---
8
+ language:
9
+ - en
10
+ tags:
11
+ - game
12
+ - pathfinding
13
+ - algorithm
14
+ - a-star
15
+ - pyqt5
16
+ - visualization
17
+ - educational
18
+ - interactive
19
+ - python
20
+ widget:
21
+ - video_path: demo.mp4
22
+ example_title: A* Algorithm Demo
23
+ ---
24
+
25
+ # Interactive A* Pathfinding Algorithm Game
26
+
27
+ ## Model Overview
28
+
29
+ An interactive educational game that visually demonstrates the A* pathfinding algorithm using PyQt5. This application provides a hands-on way to understand how one of the most popular pathfinding algorithms works through real-time visualization.
30
+
31
+ ## What is A* Algorithm?
32
+
33
+ A* (A-Star) is a graph traversal and path search algorithm that finds the shortest path between nodes. It combines the strengths of Dijkstra's Algorithm (guaranteed shortest path) and Greedy Best-First Search (efficiency) by using both:
34
+
35
+ - **g(n)**: Actual cost from start node to current node
36
+ - **h(n)**: Heuristic estimated cost from current node to goal
37
+ - **f(n) = g(n) + h(n)**: Total estimated cost
38
+
39
+ ## Features
40
+
41
+ ### ๐ŸŽฎ Interactive Gameplay
42
+ - Set custom start and end positions
43
+ - Place and remove obstacles in real-time
44
+ - Visualize algorithm execution step-by-step
45
+ - Adjustable animation speed
46
+
47
+ ### ๐ŸŽจ Visual Elements
48
+ - **Green**: Start node
49
+ - **Red**: End node
50
+ - **Gray**: Obstacles/walls
51
+ - **Yellow**: Open set (nodes being considered)
52
+ - **Light Red**: Closed set (evaluated nodes)
53
+ - **Blue**: Final optimal path
54
+
55
+ ### โš™๏ธ Technical Features
56
+ - 20ร—20 grid system with 8-directional movement
57
+ - Real-time cost display (g, h, f values)
58
+ - Manhattan distance heuristic
59
+ - Pause/Resume functionality
60
+ - Reset and clear options
61
+
62
+ ## Quick Start
63
+
64
+ ### Installation
65
+ ```bash
66
+ pip install PyQt5
67
+ ```
68
+
69
+ ### Run the Game
70
+ ```bash
71
+ python astar_game.py
72
+ ```
73
+
74
+ ### Usage Instructions
75
+ 1. Select "Start Point" mode and click a grid cell to set start position
76
+ 2. Select "End Point" mode and set destination
77
+ 3. Use "Obstacles" mode to add walls
78
+ 4. Click "Start" to run the algorithm
79
+ 5. Watch the visualization and learn!
80
+
81
+ ## Educational Value
82
+
83
+ This game is perfect for:
84
+ - ๐ŸŽ“ Computer Science students learning algorithms
85
+ - ๐ŸŽฎ Game developers implementing pathfinding
86
+ - ๐Ÿ” Anyone curious about how navigation algorithms work
87
+ - ๐Ÿ’ก Understanding heuristic search methods
88
+
89
+ ## Algorithm Details
90
+
91
+ ### Heuristic Function
92
+ Uses Manhattan distance: `h(n) = |xโ‚ - xโ‚‚| + |yโ‚ - yโ‚‚|`
93
+
94
+ ### Cost Calculation
95
+ - **Movement Cost**: Euclidean distance between nodes
96
+ - **Total Cost**: f(n) = g(n) + h(n)
97
+ - **Node Expansion**: Always expands node with lowest f(n) first
98
+
99
+ ### Key Properties
100
+ - **Complete**: Always finds a solution if one exists
101
+ - **Optimal**: Always finds the shortest path
102
+ - **Efficient**: Explores fewer nodes than Dijkstra's algorithm
103
+
104
+ ## File Structure
105
+ ```
106
+ astar-game/
107
+ โ”œโ”€โ”€ astar_game.py # Main game implementation
108
+ โ”œโ”€โ”€ requirements.txt # Dependencies
109
+ โ”œโ”€โ”€ README.md # This file
110
+ โ””โ”€โ”€ demo.mp4 # Demonstration video
111
+ ```
112
+
113
+ ## Requirements
114
+
115
+ ```txt
116
+ PyQt5>=5.15.0
117
+ ```
118
+
119
+ ## Compatibility
120
+
121
+ - **Python**: 3.6+
122
+ - **OS**: Windows, macOS, Linux
123
+ - **Dependencies**: PyQt5 only
124
+
125
+ ## Try It Yourself!
126
+
127
+ ### Example Maze Challenge:
128
+ ```
129
+ S = Start, E = End, # = Obstacle
130
+
131
+ S . . # . . . . . .
132
+ . # . # . # # # . .
133
+ . # . . . # . . . .
134
+ . # # # . # . # # .
135
+ . . . # . # . # . .
136
+ # # . # . # . # . .
137
+ . . . # . . . # . .
138
+ . # # # # # # # . .
139
+ . . . . . . . . . E
140
+ ```
141
+
142
+ Can you predict the path the algorithm will find?
143
+
144
+ ## Contributing
145
+
146
+ Feel free to contribute by:
147
+ - Adding different heuristic functions
148
+ - Implementing other pathfinding algorithms
149
+ - Improving the UI/UX
150
+ - Adding level challenges
151
+
152
+ ## License
153
+
154
+ This project is open source and available under the MIT License.
155
+
156
+ ## Citation
157
+
158
+ If you use this in an educational setting or project, please credit:
159
+
160
+ ```bibtex
161
+ @software{astar_pyqt_game,
162
+ title = {Interactive A* Pathfinding Algorithm Game},
163
+ author = {Your Name},
164
+ year = {2024},
165
+ url = {https://huggingface.co/your-username/astar-game}
166
+ }
167
+ ```
168
+
169
+ ## Related Algorithms
170
+
171
+ - Dijkstra's Algorithm
172
+ - Breadth-First Search (BFS)
173
+ - Depth-First Search (DFS)
174
+ - Greedy Best-First Search
175
+ - Jump Point Search
176
+
177
+ ---
178
+
179
+ **Happy pathfinding!** ๐Ÿš€
180
+ ```
181
+
182
+ This model card includes all the essential sections that Hugging Face expects:
183
+
184
+ 1. **Metadata** (language, tags, widget)
185
+ 2. **Overview** and algorithm explanation
186
+ 3. **Features** and technical details
187
+ 4. **Installation** and usage instructions
188
+ 5. **Educational value**
189
+ 6. **Technical specifications**
190
+ 7. **Compatibility** information
191
+ 8. **Interactive examples**
192
+ 9. **Citation** template
193
+ 10. **Related content**
194
+
195
+ The card is structured to be both informative for technical users and accessible for learners new to pathfinding algorithms. You can save this as `README.md` in your Hugging Face model repository.