Triangle104 commited on
Commit
0bfc749
1 Parent(s): 5af7dbd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -0
README.md CHANGED
@@ -20,6 +20,40 @@ tags:
20
  This model was converted to GGUF format from [`natong19/Mistral-Nemo-Instruct-2407-abliterated`](https://huggingface.co/natong19/Mistral-Nemo-Instruct-2407-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
21
  Refer to the [original model card](https://huggingface.co/natong19/Mistral-Nemo-Instruct-2407-abliterated) for more details on the model.
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  ## Use with llama.cpp
24
  Install llama.cpp through brew (works on Mac and Linux)
25
 
 
20
  This model was converted to GGUF format from [`natong19/Mistral-Nemo-Instruct-2407-abliterated`](https://huggingface.co/natong19/Mistral-Nemo-Instruct-2407-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
21
  Refer to the [original model card](https://huggingface.co/natong19/Mistral-Nemo-Instruct-2407-abliterated) for more details on the model.
22
 
23
+ ---
24
+ Model details:
25
+ -
26
+ Abliterated version of Mistral-Nemo-Instruct-2407, a Large Language Model (LLM) trained jointly by Mistral AI and NVIDIA that significantly outperforms existing models smaller or similar in size. The model's strongest refusal directions have been ablated via weight orthogonalization, but the model may still refuse your request, misunderstand your intent, or provide unsolicited advice regarding ethics or safety.
27
+
28
+ Key features
29
+ Trained with a 128k context window
30
+ Trained on a large proportion of multilingual and code data
31
+ Drop-in replacement of Mistral 7B
32
+ Quickstart
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer
34
+ import torch
35
+
36
+ model_id = "natong19/Mistral-Nemo-Instruct-2407-abliterated"
37
+ device = "cuda"
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
40
+
41
+ conversation = [{"role": "user", "content": "Where's the capital of France?"}]
42
+
43
+ tool_use_prompt = tokenizer.apply_chat_template(
44
+ conversation,
45
+ tokenize=False,
46
+ add_generation_prompt=True,
47
+ )
48
+
49
+ inputs = tokenizer(tool_use_prompt, return_tensors="pt", return_token_type_ids=False).to(device)
50
+
51
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
52
+
53
+ outputs = model.generate(**inputs, max_new_tokens=128)
54
+ print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True))
55
+
56
+ ---
57
  ## Use with llama.cpp
58
  Install llama.cpp through brew (works on Mac and Linux)
59