Triangle104 commited on
Commit
9707b76
1 Parent(s): 09174e0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2 -396
README.md CHANGED
@@ -1,9 +1,7 @@
1
  ---
2
  library_name: transformers
3
  license: apache-2.0
4
- base_model:
5
- - EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
6
- - Qwen/Qwen2.5-14B
7
  datasets:
8
  - anthracite-org/kalo-opus-instruct-22k-no-refusal
9
  - Nopm/Opus_WritingStruct
@@ -28,398 +26,6 @@ model-index:
28
  This model was converted to GGUF format from [`EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2`](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
29
  Refer to the [original model card](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2) for more details on the model.
30
 
31
- ---
32
- Model details:
33
- -
34
- A RP/storywriting specialist model, full-parameter finetune of Qwen2.5-14B on mixture of synthetic and natural data.
35
- It uses Celeste 70B 0.1 data mixture, greatly expanding it to improve versatility, creativity and "flavor" of the resulting model.
36
-
37
- Version notes for 0.2: Now using the refined dataset from 32B 0.2. Major improvements in coherence, instruction following and long-context comprehension over 14B v0.1.
38
-
39
- Prompt format is ChatML.
40
-
41
- Recommended sampler values:
42
-
43
- Temperature: 0.8
44
- Min-P: 0.05
45
- Top-A: 0.3
46
- Repetition Penalty: 1.03
47
-
48
- Recommended SillyTavern presets (via CalamitousFelicitousness):
49
-
50
- Context
51
- Instruct and System Prompt
52
-
53
-
54
- Training data:
55
-
56
- Celeste 70B 0.1 data mixture minus Opus Instruct subset. See that model's card for details.
57
- Kalomaze's Opus_Instruct_25k dataset, filtered for refusals.
58
- A subset (1k rows) of ChatGPT-4o-WritingPrompts by Gryphe
59
- A subset (2k rows) of Sonnet3.5-Charcards-Roleplay by Gryphe
60
- Synthstruct and SynthRP datasets by Epiculous
61
- A subset from Dolphin-2.9.3, including filtered version of not_samantha and a small subset of systemchat.
62
-
63
- Training time and hardware:
64
-
65
- 3 hours on 8xH100 SXM, provided by FeatherlessAI
66
-
67
-
68
- Model was created by Kearm, Auri and Cahvay.
69
- Special thanks:
70
-
71
- to Cahvay for his work on investigating and reprocessing the corrupted dataset, removing the single biggest source of data poisoning.
72
- to FeatherlessAI for generously providing 8xH100 SXM node for training of this model
73
- to Gryphe, Lemmy, Kalomaze, Nopm, Epiculous and CogninitiveComputations for the data
74
- and to Allura-org for support, feedback, beta-testing and doing quality control of EVA models.
75
-
76
- Built with Axolotl
77
- See axolotl config
78
-
79
- axolotl version: 0.4.1
80
-
81
- base_model: Qwen/Qwen2.5-14B
82
-
83
- load_in_8bit: false
84
- load_in_4bit: false
85
- strict: false
86
-
87
- plugins:
88
- - axolotl.integrations.liger.LigerPlugin
89
- liger_rope: true
90
- liger_rms_norm: true
91
- liger_swiglu: true
92
- liger_fused_linear_cross_entropy: true
93
-
94
- # plugins:
95
- # - axolotl.integrations.spectrum.SpectrumPlugin
96
-
97
- # spectrum_top_fraction: 0.5
98
- # # Optional if using a pre-scanned model as your base_model. Useful if using a model mirror
99
- # spectrum_model_name: Qwen/Qwen2.5-32B
100
-
101
- datasets:
102
- - path: datasets/Celeste_Filtered_utf8fix.jsonl
103
- type: sharegpt
104
- - path: datasets/deduped_not_samantha_norefusals.jsonl
105
- type: sharegpt
106
- - path: datasets/deduped_SynthRP-Gens_processed_ShareGPT_converted_cleaned.jsonl
107
- type: sharegpt
108
- - path: datasets/deduped_Synthstruct-Gens_processed_sharegpt_converted_cleaned.jsonl
109
- type: sharegpt
110
- - path: datasets/Gryphe-4o-WP-filtered-sharegpt_utf8fix.jsonl
111
- type: sharegpt
112
- - path: datasets/opus-instruct-22k-no_refusals-filtered_utf8fix.jsonl
113
- type: sharegpt
114
- - path: datasets/Sonnet3-5-charcard-names-filtered-sharegpt_utf8fix.jsonl
115
- type: sharegpt
116
- - path: datasets/SystemChat_subset_filtered_sharegpt_utf8fix.jsonl
117
- type: sharegpt
118
-
119
- chat_template: chatml
120
- shuffle_merged_datasets: true
121
- val_set_size: 0.001
122
- output_dir: ./EVA-Qwen2.5-14B-SFFT-v0.2
123
-
124
- sequence_len: 10240
125
- sample_packing: true
126
- eval_sample_packing: false
127
- pad_to_sequence_len: true
128
-
129
- # adapter: qlora
130
- # lora_model_dir:
131
- # lora_r: 64
132
- # lora_alpha: 128
133
- # lora_dropout: 0.05
134
- # lora_target_linear: true
135
- # peft_use_dora: true
136
-
137
- base_model: Qwen/Qwen2.5-14B
138
-
139
- load_in_8bit: false
140
- load_in_4bit: false
141
- strict: false
142
-
143
- plugins:
144
- - axolotl.integrations.liger.LigerPlugin
145
- liger_rope: true
146
- liger_rms_norm: true
147
- liger_swiglu: true
148
- liger_fused_linear_cross_entropy: true
149
-
150
- datasets:
151
- - path: datasets/Celeste_Filtered_utf8fix.jsonl
152
- type: sharegpt
153
- - path: datasets/deduped_not_samantha_norefusals.jsonl
154
- type: sharegpt
155
- - path: datasets/deduped_SynthRP-Gens_processed_ShareGPT_converted_cleaned.jsonl
156
- type: sharegpt
157
- - path: datasets/deduped_Synthstruct-Gens_processed_sharegpt_converted_cleaned.jsonl
158
- type: sharegpt
159
- - path: datasets/Gryphe-4o-WP-filtered-sharegpt_utf8fix.jsonl
160
- type: sharegpt
161
- - path: datasets/opus-instruct-22k-no_refusals-filtered_utf8fix.jsonl
162
- type: sharegpt
163
- - path: datasets/Sonnet3-5-charcard-names-filtered-sharegpt_utf8fix.jsonl
164
- type: sharegpt
165
- - path: datasets/SystemChat_subset_filtered_sharegpt_utf8fix.jsonl
166
- type: sharegpt
167
-
168
- chat_template: chatml
169
- shuffle_merged_datasets: true
170
- val_set_size: 0.005
171
- output_dir: ./EVA-Qwen2.5-14B-SFFT-v0.2
172
-
173
- sequence_len: 10240
174
- sample_packing: true
175
- eval_sample_packing: false
176
- pad_to_sequence_len: true
177
-
178
- # adapter: qlora
179
- # lora_model_dir:
180
- # lora_r: 32
181
- # lora_alpha: 16
182
- # lora_dropout: 0.05
183
- # lora_target_linear: true
184
- # peft_use_dora: true
185
-
186
- unfrozen_parameters:
187
- - ^lm_head.weight$
188
- - ^model.embed_tokens.weight$
189
- # mlp.down_proj layers
190
- - model.layers.1.mlp.down_proj
191
- - model.layers.35.mlp.down_proj
192
- - model.layers.38.mlp.down_proj
193
- - model.layers.37.mlp.down_proj
194
- - model.layers.36.mlp.down_proj
195
- - model.layers.15.mlp.down_proj
196
- - model.layers.11.mlp.down_proj
197
- - model.layers.12.mlp.down_proj
198
- - model.layers.34.mlp.down_proj
199
- - model.layers.44.mlp.down_proj
200
- - model.layers.45.mlp.down_proj
201
- - model.layers.9.mlp.down_proj
202
- - model.layers.41.mlp.down_proj
203
- - model.layers.33.mlp.down_proj
204
- - model.layers.43.mlp.down_proj
205
- - model.layers.40.mlp.down_proj
206
- - model.layers.13.mlp.down_proj
207
- - model.layers.8.mlp.down_proj
208
- - model.layers.39.mlp.down_proj
209
- - model.layers.10.mlp.down_proj
210
- - model.layers.14.mlp.down_proj
211
- - model.layers.16.mlp.down_proj
212
- - model.layers.31.mlp.down_proj
213
- - model.layers.32.mlp.down_proj
214
- # mlp.gate_proj layers
215
- - model.layers.1.mlp.gate_proj
216
- - model.layers.44.mlp.gate_proj
217
- - model.layers.46.mlp.gate_proj
218
- - model.layers.45.mlp.gate_proj
219
- - model.layers.43.mlp.gate_proj
220
- - model.layers.47.mlp.gate_proj
221
- - model.layers.42.mlp.gate_proj
222
- - model.layers.32.mlp.gate_proj
223
- - model.layers.27.mlp.gate_proj
224
- - model.layers.33.mlp.gate_proj
225
- - model.layers.28.mlp.gate_proj
226
- - model.layers.39.mlp.gate_proj
227
- - model.layers.41.mlp.gate_proj
228
- - model.layers.40.mlp.gate_proj
229
- - model.layers.30.mlp.gate_proj
230
- - model.layers.29.mlp.gate_proj
231
- - model.layers.31.mlp.gate_proj
232
- - model.layers.37.mlp.gate_proj
233
- - model.layers.26.mlp.gate_proj
234
- - model.layers.10.mlp.gate_proj
235
- - model.layers.38.mlp.gate_proj
236
- - model.layers.36.mlp.gate_proj
237
- - model.layers.12.mlp.gate_proj
238
- - model.layers.13.mlp.gate_proj
239
- # mlp.up_proj layers
240
- - model.layers.1.mlp.up_proj
241
- - model.layers.13.mlp.up_proj
242
- - model.layers.11.mlp.up_proj
243
- - model.layers.14.mlp.up_proj
244
- - model.layers.15.mlp.up_proj
245
- - model.layers.12.mlp.up_proj
246
- - model.layers.8.mlp.up_proj
247
- - model.layers.16.mlp.up_proj
248
- - model.layers.9.mlp.up_proj
249
- - model.layers.19.mlp.up_proj
250
- - model.layers.10.mlp.up_proj
251
- - model.layers.7.mlp.up_proj
252
- - model.layers.17.mlp.up_proj
253
- - model.layers.20.mlp.up_proj
254
- - model.layers.21.mlp.up_proj
255
- - model.layers.18.mlp.up_proj
256
- - model.layers.37.mlp.up_proj
257
- - model.layers.38.mlp.up_proj
258
- - model.layers.39.mlp.up_proj
259
- - model.layers.42.mlp.up_proj
260
- - model.layers.41.mlp.up_proj
261
- - model.layers.27.mlp.up_proj
262
- - model.layers.28.mlp.up_proj
263
- - model.layers.36.mlp.up_proj
264
- # self_attn.k_proj layers
265
- - model.layers.47.self_attn.k_proj
266
- - model.layers.39.self_attn.k_proj
267
- - model.layers.41.self_attn.k_proj
268
- - model.layers.37.self_attn.k_proj
269
- - model.layers.35.self_attn.k_proj
270
- - model.layers.44.self_attn.k_proj
271
- - model.layers.38.self_attn.k_proj
272
- - model.layers.14.self_attn.k_proj
273
- - model.layers.7.self_attn.k_proj
274
- - model.layers.12.self_attn.k_proj
275
- - model.layers.11.self_attn.k_proj
276
- - model.layers.32.self_attn.k_proj
277
- - model.layers.10.self_attn.k_proj
278
- - model.layers.8.self_attn.k_proj
279
- - model.layers.6.self_attn.k_proj
280
- - model.layers.9.self_attn.k_proj
281
- - model.layers.45.self_attn.k_proj
282
- - model.layers.42.self_attn.k_proj
283
- - model.layers.40.self_attn.k_proj
284
- - model.layers.5.self_attn.k_proj
285
- - model.layers.0.self_attn.k_proj
286
- - model.layers.33.self_attn.k_proj
287
- - model.layers.34.self_attn.k_proj
288
- - model.layers.13.self_attn.k_proj
289
- # self_attn.o_proj layers
290
- - model.layers.12.self_attn.o_proj
291
- - model.layers.5.self_attn.o_proj
292
- - model.layers.14.self_attn.o_proj
293
- - model.layers.16.self_attn.o_proj
294
- - model.layers.20.self_attn.o_proj
295
- - model.layers.13.self_attn.o_proj
296
- - model.layers.11.self_attn.o_proj
297
- - model.layers.4.self_attn.o_proj
298
- - model.layers.6.self_attn.o_proj
299
- - model.layers.19.self_attn.o_proj
300
- - model.layers.7.self_attn.o_proj
301
- - model.layers.18.self_attn.o_proj
302
- - model.layers.8.self_attn.o_proj
303
- - model.layers.38.self_attn.o_proj
304
- - model.layers.15.self_attn.o_proj
305
- - model.layers.17.self_attn.o_proj
306
- - model.layers.9.self_attn.o_proj
307
- - model.layers.10.self_attn.o_proj
308
- - model.layers.21.self_attn.o_proj
309
- - model.layers.28.self_attn.o_proj
310
- - model.layers.32.self_attn.o_proj
311
- - model.layers.35.self_attn.o_proj
312
- - model.layers.39.self_attn.o_proj
313
- - model.layers.3.self_attn.o_proj
314
- # self_attn.q_proj layers
315
- - model.layers.1.self_attn.q_proj
316
- - model.layers.2.self_attn.q_proj
317
- - model.layers.3.self_attn.q_proj
318
- - model.layers.44.self_attn.q_proj
319
- - model.layers.29.self_attn.q_proj
320
- - model.layers.45.self_attn.q_proj
321
- - model.layers.43.self_attn.q_proj
322
- - model.layers.32.self_attn.q_proj
323
- - model.layers.38.self_attn.q_proj
324
- - model.layers.19.self_attn.q_proj
325
- - model.layers.42.self_attn.q_proj
326
- - model.layers.34.self_attn.q_proj
327
- - model.layers.36.self_attn.q_proj
328
- - model.layers.40.self_attn.q_proj
329
- - model.layers.26.self_attn.q_proj
330
- - model.layers.20.self_attn.q_proj
331
- - model.layers.28.self_attn.q_proj
332
- - model.layers.39.self_attn.q_proj
333
- - model.layers.41.self_attn.q_proj
334
- - model.layers.33.self_attn.q_proj
335
- - model.layers.35.self_attn.q_proj
336
- - model.layers.25.self_attn.q_proj
337
- - model.layers.30.self_attn.q_proj
338
- - model.layers.27.self_attn.q_proj
339
- # self_attn.v_proj layers
340
- - model.layers.0.self_attn.v_proj
341
- - model.layers.7.self_attn.v_proj
342
- - model.layers.39.self_attn.v_proj
343
- - model.layers.31.self_attn.v_proj
344
- - model.layers.15.self_attn.v_proj
345
- - model.layers.10.self_attn.v_proj
346
- - model.layers.41.self_attn.v_proj
347
- - model.layers.32.self_attn.v_proj
348
- - model.layers.6.self_attn.v_proj
349
- - model.layers.33.self_attn.v_proj
350
- - model.layers.42.self_attn.v_proj
351
- - model.layers.29.self_attn.v_proj
352
- - model.layers.9.self_attn.v_proj
353
- - model.layers.14.self_attn.v_proj
354
- - model.layers.35.self_attn.v_proj
355
- - model.layers.38.self_attn.v_proj
356
- - model.layers.13.self_attn.v_proj
357
- - model.layers.30.self_attn.v_proj
358
- - model.layers.34.self_attn.v_proj
359
- - model.layers.5.self_attn.v_proj
360
- - model.layers.28.self_attn.v_proj
361
- - model.layers.37.self_attn.v_proj
362
- - model.layers.27.self_attn.v_proj
363
- - model.layers.11.self_attn.v_proj
364
-
365
- wandb_project: EVA-Qwen2.5-14B-SFFT-v0.2
366
- wandb_entity:
367
- wandb_watch:
368
- wandb_name: Unit-02
369
- wandb_log_model:
370
-
371
- gradient_accumulation_steps: 8
372
- micro_batch_size: 2
373
- num_epochs: 3
374
- optimizer: paged_ademamix_8bit
375
- lr_scheduler: cosine
376
- learning_rate: 0.00005
377
- max_grad_norm: 3
378
-
379
- train_on_inputs: false
380
- group_by_length: false
381
- bf16: auto
382
- fp16:
383
- tf32: false
384
-
385
- gradient_checkpointing: "unsloth"
386
- # gradient_checkpointing_kwargs:
387
- # use_reentrant: true
388
- early_stopping_patience:
389
- resume_from_checkpoint:
390
- local_rank:
391
- logging_steps: 1
392
- xformers_attention:
393
- flash_attention: true
394
-
395
- warmup_steps: 20
396
- evals_per_epoch: 4
397
- saves_per_epoch: 4
398
- save_safetensors: true
399
- hub_model_id:
400
- hub_strategy:
401
- debug:
402
- deepspeed: deepspeed_configs/zero3_bf16.json
403
- weight_decay: 0.1
404
- # fsdp:
405
- # - full_shard
406
- # - auto_wrap
407
- # fsdp_config:
408
- # fsdp_limit_all_gathers: true
409
- # fsdp_sync_module_states: false
410
- # fsdp_offload_params: true
411
- # fsdp_cpu_ram_efficient_loading: true
412
- # fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
413
- # fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
414
- # fsdp_activation_checkpointing: true
415
- # fsdp_state_dict_type: SHARDED_STATE_DICT # Changed from FULL_STATE_DICT
416
- # fsdp_sharding_strategy: FULL_SHARD
417
- # fsdp_forward_prefetch: false # Added
418
- # fsdp_backward_prefetch: "BACKWARD_PRE" # Added
419
- # fsdp_backward_prefetch_limit: 1 # Added
420
- # fsdp_mixed_precision: BF16 # Added
421
-
422
- ---
423
  ## Use with llama.cpp
424
  Install llama.cpp through brew (works on Mac and Linux)
425
 
@@ -458,4 +64,4 @@ Step 3: Run inference through the main binary.
458
  or
459
  ```
460
  ./llama-server --hf-repo Triangle104/EVA-Qwen2.5-14B-v0.2-Q6_K-GGUF --hf-file eva-qwen2.5-14b-v0.2-q6_k.gguf -c 2048
461
- ```
 
1
  ---
2
  library_name: transformers
3
  license: apache-2.0
4
+ base_model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
 
 
5
  datasets:
6
  - anthracite-org/kalo-opus-instruct-22k-no-refusal
7
  - Nopm/Opus_WritingStruct
 
26
  This model was converted to GGUF format from [`EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2`](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
27
  Refer to the [original model card](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2) for more details on the model.
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  ## Use with llama.cpp
30
  Install llama.cpp through brew (works on Mac and Linux)
31
 
 
64
  or
65
  ```
66
  ./llama-server --hf-repo Triangle104/EVA-Qwen2.5-14B-v0.2-Q6_K-GGUF --hf-file eva-qwen2.5-14b-v0.2-q6_k.gguf -c 2048
67
+ ```