Update README.md
Browse files
README.md
CHANGED
@@ -38,32 +38,48 @@ import torch
|
|
38 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
39 |
from datasets import load_dataset
|
40 |
|
41 |
-
|
42 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
43 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
49 |
-
)
|
50 |
-
model.to(device)
|
51 |
|
52 |
-
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
tokenizer=processor.tokenizer,
|
58 |
-
feature_extractor=processor.feature_extractor,
|
59 |
-
torch_dtype=torch_dtype,
|
60 |
-
device=device,
|
61 |
-
)
|
62 |
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
print(result["text"])
|
68 |
```
|
69 |
|
|
|
38 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
39 |
from datasets import load_dataset
|
40 |
|
|
|
41 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
42 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
43 |
|
44 |
+
def download_adapter_model():
|
45 |
+
model_name = "whisper-v3-LoRA-en_students"
|
46 |
+
print(f"Downloading the adapter model '{model_name}' from the Hugging Face Hub.", flush=True)
|
47 |
+
|
48 |
+
# Define the path for the directory
|
49 |
+
local_directory = os.path.expanduser("~/.cache/huggingface/hub")
|
50 |
+
|
51 |
+
# Check if the directory exists
|
52 |
+
if not os.path.exists(local_directory):
|
53 |
+
# If it doesn't exist, create it
|
54 |
+
os.makedirs(local_directory)
|
55 |
+
print(f"Directory '{local_directory}' created.", flush=True)
|
56 |
+
else:
|
57 |
+
print(f"Directory '{local_directory}' already exists.", flush=True)
|
58 |
+
|
59 |
+
repo_id = f"Transducens/{model_name}"
|
60 |
+
repo_adapter_dir = f"{model_name}/checkpoint-5000/adapter_model"
|
61 |
+
repo_filename_config = f"{repo_adapter_dir}/adapter_config.json"
|
62 |
+
repo_filename_tensors = f"{repo_adapter_dir}/adapter_model.safetensors"
|
63 |
+
|
64 |
+
adapter_config = hf_hub_download(repo_id=repo_id, filename=repo_filename_config, local_dir=local_directory)
|
65 |
+
adapter_model_tensors = hf_hub_download(repo_id=repo_id, filename=repo_filename_tensors, local_dir=local_directory)
|
66 |
+
|
67 |
+
print(f"Dowloaded the adapter model '{model_name}' from the Hugging Face Hub.", flush=True)
|
68 |
|
69 |
+
return os.path.join(local_directory, repo_adapter_dir)
|
|
|
|
|
|
|
70 |
|
71 |
+
peft_model_id = adapter_path # Use the same model ID as before.
|
72 |
+
peft_config = PeftConfig.from_pretrained(peft_model_id)
|
73 |
+
model = WhisperForConditionalGeneration.from_pretrained(
|
74 |
+
peft_config.base_model_name_or_path, load_in_8bit=False)
|
75 |
|
76 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
77 |
+
model.generation_config.language = "<|en|>"
|
78 |
+
model.generation_config.task = "transcribe"
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-large-v3", task="transcribe")
|
81 |
+
feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-large-v3")
|
82 |
|
83 |
+
pipe = pipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, task="automatic-speech-recognition", device=device)
|
|
|
84 |
```
|
85 |
|