HHansi commited on
Commit
8861816
1 Parent(s): 730cc59

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<e>": 250002, "</e>": 250003}
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-large",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.16.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250004
28
+ }
eval_results.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accuracy = 0.8346213292117465
2
+ cls_report = precision recall f1-score support
3
+
4
+ 0.0 0.8316 0.8467 0.8391 659
5
+ 1.0 0.8379 0.8220 0.8299 635
6
+
7
+ accuracy 0.8346 1294
8
+ macro avg 0.8347 0.8344 0.8345 1294
9
+ weighted avg 0.8347 0.8346 0.8346 1294
10
+
11
+ eval_loss = 0.40157332004588325
12
+ fn = 113
13
+ fp = 101
14
+ macro_f1 = 0.8344932283012778
15
+ mcc = 0.669130200720142
16
+ tn = 558
17
+ tp = 522
18
+ weighted_f1 = 0.834578628908257
19
+ weighted_p = 0.8347379273885076
20
+ weighted_r = 0.8343923625631773
model_args.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"adam_epsilon": 1e-08, "begin_tag": "<e>", "best_model_dir": "best_model", "cache_dir": "temp/cache_dir/", "config": {}, "custom_layer_parameters": [], "custom_parameter_groups": [], "dataloader_num_workers": 70, "do_lower_case": false, "dynamic_quantize": false, "early_stopping_consider_epochs": false, "early_stopping_delta": 0, "early_stopping_metric": "eval_loss", "early_stopping_metric_minimize": true, "early_stopping_patience": 10, "encoding": null, "end_tag": "</e>", "eval_batch_size": 8, "evaluate_during_training": true, "evaluate_during_training_silent": false, "evaluate_during_training_steps": 20, "evaluate_during_training_verbose": true, "evaluate_each_epoch": true, "fp16": false, "gradient_accumulation_steps": 1, "learning_rate": 1e-05, "local_rank": -1, "logging_steps": 20, "manual_seed": 777, "max_grad_norm": 1.0, "max_seq_length": 120, "model_name": "xlm-roberta-large", "model_type": "xlmroberta", "multiprocessing_chunksize": 500, "n_gpu": 1, "no_cache": false, "no_save": false, "num_train_epochs": 5, "output_dir": "temp/outputs/", "overwrite_output_dir": true, "process_count": 70, "quantized_model": false, "reprocess_input_data": true, "save_best_model": true, "save_eval_checkpoints": false, "save_model_every_epoch": false, "save_optimizer_and_scheduler": true, "save_steps": 20, "save_recent_only": true, "silent": false, "tensorboard_dir": null, "thread_count": null, "train_batch_size": 8, "train_custom_parameters_only": false, "use_cached_eval_features": false, "use_early_stopping": true, "use_multiprocessing": false, "wandb_kwargs": {"group": "all_xlm-roberta-large_CLS-B_concat", "job_type": "2"}, "wandb_project": "TransWiC-groups", "warmup_ratio": 0.1, "warmup_steps": 730, "weight_decay": 0, "skip_special_tokens": true, "model_class": "ClassificationModel", "labels_list": [0, 1], "labels_map": {}, "lazy_delimiter": "\t", "lazy_labels_column": 1, "lazy_loading": false, "lazy_loading_start_line": 1, "lazy_text_a_column": null, "lazy_text_b_column": null, "lazy_text_column": 0, "onnx": false, "regression": false, "sliding_window": false, "stride": 0.8, "tie_value": 1, "tagging": true, "strategy": "CLS-B", "special_tags": ["<s>", "<e>"], "merge_n": 3, "merge_type": "concat"}
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfcbde2768d3074913013b322ec888a82c613270400a01769fdeb55ef3e09e2f
3
+ size 4546546317
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8898e6218d61c56702bad7d486828e23eaaac3249844e4ac038c68424c1343a9
3
+ size 2277523261
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e91252147ca91b071b98d63f6fc0443781d0660c0159a9b53c83b10a8804619c
3
+ size 627
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
test_eval_ar.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.8337 0.7520 0.7907 500
5
+ T 0.7741 0.8500 0.8103 500
6
+
7
+ accuracy 0.8010 1000
8
+ macro avg 0.8039 0.8010 0.8005 1000
9
+ weighted avg 0.8039 0.8010 0.8005 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7448979591836735
14
+ Weighted Recall = 0.7448979591836735
15
+ Weighted Precision = 0.7757787325456499
16
+ Weighted F1 = 0.742094640053824
17
+ Macro Recall = 0.7557651991614256
18
+ Macro Precision = 0.7675438596491229
19
+ Macro F1 = 0.7435897435897436
20
+ ADV
21
+ Accuracy = 0.8
22
+ Weighted Recall = 0.8
23
+ Weighted Precision = 0.8
24
+ Weighted F1 = 0.8
25
+ Macro Recall = 0.6875
26
+ Macro Precision = 0.6875
27
+ Macro F1 = 0.6875
28
+ NOUN
29
+ Accuracy = 0.8036437246963563
30
+ Weighted Recall = 0.8036437246963563
31
+ Weighted Precision = 0.8076160740590006
32
+ Weighted F1 = 0.8028229150154391
33
+ Macro Recall = 0.8029016393442623
34
+ Macro Precision = 0.8080270067516879
35
+ Macro F1 = 0.8026530923228354
36
+ VERB
37
+ Accuracy = 0.8115577889447236
38
+ Weighted Recall = 0.8115577889447236
39
+ Weighted Precision = 0.8118021152438288
40
+ Weighted F1 = 0.8115518407552622
41
+ Macro Recall = 0.8116650251281663
42
+ Macro Precision = 0.8117043847241867
43
+ Macro F1 = 0.8115565993068314
test_eval_en.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.8841 0.9000 0.8920 500
5
+ T 0.8982 0.8820 0.8900 500
6
+
7
+ accuracy 0.8910 1000
8
+ macro avg 0.8911 0.8910 0.8910 1000
9
+ weighted avg 0.8911 0.8910 0.8910 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.8958333333333334
14
+ Weighted Recall = 0.8958333333333334
15
+ Weighted Precision = 0.8990881559022976
16
+ Weighted F1 = 0.8953000828823559
17
+ Macro Recall = 0.8928018575851393
18
+ Macro Precision = 0.9009480545131345
19
+ Macro F1 = 0.8946906537955244
20
+ ADV
21
+ Accuracy = 0.7333333333333333
22
+ Weighted Recall = 0.7333333333333333
23
+ Weighted Precision = 0.7446428571428572
24
+ Weighted F1 = 0.7357466063348416
25
+ Macro Recall = 0.7361111111111112
26
+ Macro Precision = 0.7276785714285714
27
+ Macro F1 = 0.7285067873303168
28
+ NOUN
29
+ Accuracy = 0.8996212121212122
30
+ Weighted Recall = 0.8996212121212122
31
+ Weighted Precision = 0.8996255059056384
32
+ Weighted F1 = 0.8996201319082674
33
+ Macro Recall = 0.8996125977473277
34
+ Macro Precision = 0.8996297996900648
35
+ Macro F1 = 0.8996179714823782
36
+ VERB
37
+ Accuracy = 0.889261744966443
38
+ Weighted Recall = 0.889261744966443
39
+ Weighted Precision = 0.8943957648776926
40
+ Weighted F1 = 0.8889001864090832
41
+ Macro Recall = 0.889261744966443
42
+ Macro Precision = 0.8943957648776926
43
+ Macro F1 = 0.8889001864090833
test_eval_fr.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.7920 0.7920 0.7920 500
5
+ T 0.7920 0.7920 0.7920 500
6
+
7
+ accuracy 0.7920 1000
8
+ macro avg 0.7920 0.7920 0.7920 1000
9
+ weighted avg 0.7920 0.7920 0.7920 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7608695652173914
14
+ Weighted Recall = 0.7608695652173914
15
+ Weighted Precision = 0.7604421178171686
16
+ Weighted F1 = 0.7598348662207358
17
+ Macro Recall = 0.7553381844208518
18
+ Macro Precision = 0.7598009467168345
19
+ Macro F1 = 0.7567307692307692
20
+ ADV
21
+ Accuracy = 0.8
22
+ Weighted Recall = 0.8
23
+ Weighted Precision = 0.7925465838509318
24
+ Weighted F1 = 0.7920454545454546
25
+ Macro Recall = 0.7301587301587302
26
+ Macro Precision = 0.7701863354037267
27
+ Macro F1 = 0.7443181818181819
28
+ NOUN
29
+ Accuracy = 0.7704280155642024
30
+ Weighted Recall = 0.7704280155642024
31
+ Weighted Precision = 0.7704379223081299
32
+ Weighted F1 = 0.770386283423363
33
+ Macro Recall = 0.770251238017355
34
+ Macro Precision = 0.7704478290520573
35
+ Macro F1 = 0.7703028191416843
36
+ VERB
37
+ Accuracy = 0.8529411764705882
38
+ Weighted Recall = 0.8529411764705882
39
+ Weighted Precision = 0.8539274392391688
40
+ Weighted F1 = 0.8517068401978889
41
+ Macro Recall = 0.8437275985663082
42
+ Macro Precision = 0.8554890219560878
43
+ Macro F1 = 0.847798108667674
test_eval_ru.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.7025 0.7980 0.7472 500
5
+ T 0.7662 0.6620 0.7103 500
6
+
7
+ accuracy 0.7300 1000
8
+ macro avg 0.7343 0.7300 0.7287 1000
9
+ weighted avg 0.7343 0.7300 0.7287 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.6666666666666666
14
+ Weighted Recall = 0.6666666666666666
15
+ Weighted Precision = 0.7022222222222222
16
+ Weighted F1 = 0.6726998491704373
17
+ Macro Recall = 0.6794258373205742
18
+ Macro Precision = 0.6666666666666667
19
+ Macro F1 = 0.6606334841628959
20
+ ADV
21
+ Accuracy = 0.4375
22
+ Weighted Recall = 0.4375
23
+ Weighted Precision = 0.5113636363636364
24
+ Weighted F1 = 0.42647058823529416
25
+ Macro Recall = 0.4833333333333333
26
+ Macro Precision = 0.4818181818181818
27
+ Macro F1 = 0.43529411764705883
28
+ NOUN
29
+ Accuracy = 0.7508591065292096
30
+ Weighted Recall = 0.7508591065292096
31
+ Weighted Precision = 0.7516175271390544
32
+ Weighted F1 = 0.7502539921270467
33
+ Macro Recall = 0.7495035460992907
34
+ Macro Precision = 0.7519425645432736
35
+ Macro F1 = 0.7497353226394783
36
+ VERB
37
+ Accuracy = 0.7150537634408602
38
+ Weighted Recall = 0.7150537634408602
39
+ Weighted Precision = 0.7253327932984116
40
+ Weighted F1 = 0.7125312341480828
41
+ Macro Recall = 0.7166276346604216
42
+ Macro Precision = 0.7245212909412364
43
+ Macro F1 = 0.7129295282469423
test_eval_zh.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.6050 0.6800 0.6403 500
5
+ T 0.6347 0.5560 0.5928 500
6
+
7
+ accuracy 0.6180 1000
8
+ macro avg 0.6198 0.6180 0.6165 1000
9
+ weighted avg 0.6198 0.6180 0.6165 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.5967741935483871
14
+ Weighted Recall = 0.5967741935483871
15
+ Weighted Precision = 0.6541238012205753
16
+ Weighted F1 = 0.5981382152720068
17
+ Macro Recall = 0.625
18
+ Macro Precision = 0.6232432432432433
19
+ Macro F1 = 0.5966692688004164
20
+ ADV
21
+ Accuracy = 0.5
22
+ Weighted Recall = 0.5
23
+ Weighted Precision = 0.75
24
+ Weighted F1 = 0.5416666666666667
25
+ Macro Recall = 0.59375
26
+ Macro Precision = 0.5625
27
+ Macro F1 = 0.4791666666666667
28
+ NOUN
29
+ Accuracy = 0.6389891696750902
30
+ Weighted Recall = 0.6389891696750902
31
+ Weighted Precision = 0.6388564783902765
32
+ Weighted F1 = 0.638847835129295
33
+ Macro Recall = 0.6384846113719354
34
+ Macro Precision = 0.638701671891327
35
+ Macro F1 = 0.6385180545224393
36
+ VERB
37
+ Accuracy = 0.5961538461538461
38
+ Weighted Recall = 0.5961538461538461
39
+ Weighted Precision = 0.5972027527222643
40
+ Weighted F1 = 0.5910548959663606
41
+ Macro Recall = 0.5925411025145068
42
+ Macro Precision = 0.5973825652768502
43
+ Macro F1 = 0.5893066844735084
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sp_model_kwargs": {}, "do_lower_case": false, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": "/home/hh2/.cache/huggingface/transformers/7766c86e10505ed9b39af34e456480399bf06e35b36b8f2b917460a2dbe94e59.a984cf52fc87644bd4a2165f1e07e0ac880272c1e82d648b4674907056912bd7", "name_or_path": "xlm-roberta-large", "tokenizer_class": "XLMRobertaTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ccbc84497da9805d9ca939579ef0a453eac719f3543f6fd39d4b65aa57154c8
3
+ size 2875