TonyCh0pper commited on
Commit
a29de3e
1 Parent(s): da5dd69

Add trained PPO LunarLander-v2 model.

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 226.44 +/- 60.13
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3662472c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3662472cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3662472d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3662472dd0>", "_build": "<function ActorCriticPolicy._build at 0x7f3662472e60>", "forward": "<function ActorCriticPolicy.forward at 0x7f3662472ef0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3662472f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3662473010>", "_predict": "<function ActorCriticPolicy._predict at 0x7f36624730a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3662473130>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36624731c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3662473250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f366260b840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719470598904852546, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECbnT0aQ4g/5ugOPRAIoL5v8P09RoKFPAAAAAAAAAAAAFvqvNmvCT76sIA9cSxdvrOUlDyoD3m9AAAAAAAAAACaO8281eIIP/okNr4wXRi+mK+avamUnD0AAAAAAAAAAABBFL5mT4E+RO6FPe5fTb4qqyc9gpLlvAAAAAAAAAAAgAhKvrp9vT+BGBm/STSYvQpDTr7bXJu+AAAAAAAAAADTX2Y+8UsXvSKjb7pfOBw5n4iGvv4jpTkAAIA/AACAP/rHR75DcTQ/PSOHPaXEmr6h+5e71vRyPAAAAAAAAAAAzaxDO35ZtT/A1Zo+7KeFPnFLYrs2Soy9AAAAAAAAAABt7gK+zK9jP8mlkz0/01O+Ckuiu1mTJD0AAAAAAAAAABrKQj2Oja+8RrSuvYdUnL3clwo+s2DPPgAAgD8AAIA/M+bTvEuC4z5rxPq8NJVyvnz2JL3mqoi9AAAAAAAAAADNg+E9dUsVPhl5Bb59OEe+L04gvQiQvrwAAAAAAAAAAAr9V74HKA8/m/wqPiTMXb5WGBm8AqqSvAAAAAAAAAAAgCNQPbbbnj+2DEg+oF63vgUTyz1rK6Q9AAAAAAAAAAAQJU6+VBjWvK068Lpzini5JzI5PhNvHjoAAIA/AACAP83aZD1x5Nc9Wow6vV0+Zr60tZy7LjMzvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJGlr/KhcuMAWyUTTABjAF0lEdAlj/ZeZ5Rj3V9lChoBkdAbkf8WsRxtGgHTW8CaAhHQJZCfT3IuGt1fZQoaAZHQEkg+N96TntoB0v9aAhHQJZCiwnpjc51fZQoaAZHQG+u3lCCz1NoB02NAWgIR0CWQuX8O09hdX2UKGgGR0Bt2ag5BC2MaAdNdQJoCEdAlkLxg3Lmp3V9lChoBkdAbRowztTkyWgHTZkBaAhHQJZEI9RrJsB1fZQoaAZHQG/mofCAMDxoB01RAWgIR0CWRM7L+xW1dX2UKGgGR0BuX0rwvxpdaAdNbwFoCEdAlkZ3lfZ26nV9lChoBkdAcR3UYKpkw2gHTXcBaAhHQJZjqD+R5kd1fZQoaAZHQF/wKLKmsNloB03oA2gIR0CWZC1RLsa9dX2UKGgGR0BxNDwPRRdhaAdNcgFoCEdAlmXRIz3yqnV9lChoBkdAcZP1schkiGgHTVADaAhHQJZoommce8x1fZQoaAZHQHCmREroW59oB03LAmgIR0CWaK9zwMH9dX2UKGgGR0Bwm/jrAxi5aAdNWAFoCEdAlmmXiBGx2XV9lChoBkdAcH0619fCymgHTWACaAhHQJZp3/WDpTx1fZQoaAZHQG0aTTfBN21oB005AmgIR0CWaicqvvBrdX2UKGgGR0BuePFrEcbSaAdNcQFoCEdAlmpbjT8YRHV9lChoBkdAcc4tQ9A5aWgHTXIBaAhHQJZqvkxREWt1fZQoaAZHQGCliIcinpBoB03oA2gIR0CWa5aGYa5xdX2UKGgGR0BuFeGwiaAnaAdN1wFoCEdAlmxdYSxqwnV9lChoBkdAcQL8nNPgvWgHTYEBaAhHQJZs7zxwyZd1fZQoaAZHQG9xhlcyFf1oB02DAWgIR0CWbno8p1A8dX2UKGgGR0BsXgYHgP3BaAdN7gFoCEdAlm7lu3trsXV9lChoBkdAcP6zEJjUeGgHTSoBaAhHQJZwTH0btJF1fZQoaAZHQHCMAt4A0bdoB036AWgIR0CWcItGNJe3dX2UKGgGR0Bvj6IDYAbRaAdNLQFoCEdAlnC3e7+T/3V9lChoBkdAO+lZkkKNQ2gHS+hoCEdAlnOrEgntwHV9lChoBkdAcTg0LMLWqmgHTWUBaAhHQJZzyugYgq51fZQoaAZHQG6dzYukDZFoB01AAWgIR0CWdIj9n9NvdX2UKGgGR0BGfKgAZKnOaAdNJQFoCEdAlnSfCuU2UHV9lChoBkdAbZEWuX/o7mgHTWwBaAhHQJZ2G/Zdv891fZQoaAZHQHFLHSSeRPpoB01gAWgIR0CWdv6VMVUNdX2UKGgGR0BvTe5z5oGqaAdNbQFoCEdAlncUGFBY3nV9lChoBkdAMpxbjcVQAWgHTT4BaAhHQJZ9CIAOrhl1fZQoaAZHQHFbVTzd1uBoB02rAWgIR0CWfUyxA0KrdX2UKGgGR0Bx2S27Wd3CaAdNkgFoCEdAln5AXZXdTHV9lChoBkdAcIWRuTA31mgHTY0BaAhHQJZ+kmjTKDF1fZQoaAZHQFAAQpWmxdJoB0vNaAhHQJZ/ECA+Y+l1fZQoaAZHQG7biJoCdSVoB00zAmgIR0CWf5UPQOWjdX2UKGgGR0BwuFe0G/vfaAdNmwFoCEdAloDtQsPJ73V9lChoBkdAcAUVSXMQmWgHTU8BaAhHQJaB/FKkEcN1fZQoaAZHQHCNJcgQpWpoB01HAWgIR0CWgm3gk1MudX2UKGgGR0BxfV3eN1hcaAdNXgFoCEdAloJ4cJdB0XV9lChoBkdAcMj/pdKNAGgHTXcCaAhHQJaDX0Fr2xp1fZQoaAZHQHCm4AOrhitoB00+AWgIR0CWhGUSZjQRdX2UKGgGR0BwyHZK3/gjaAdNXAFoCEdAloVK0dBBzHV9lChoBkdAcI+AMDwH7mgHTRECaAhHQJaFirksBhh1fZQoaAZHQHDIxHww0wdoB026AWgIR0CWhj3qAz55dX2UKGgGR0BwSk3uNPxhaAdN6wJoCEdAlokmJWNm2HV9lChoBkdAcTuLofSx7mgHTT8BaAhHQJaJ9X/5tWN1fZQoaAZHQG7BP2GqPwNoB009AWgIR0CWizkVeruIdX2UKGgGR0BwaPwc5sCUaAdNXgFoCEdAlotGfK6nSHV9lChoBkdAcAaDR+jM3mgHTXUBaAhHQJagWGL1mJ51fZQoaAZHQHBJAAdXDFZoB01kAWgIR0CWoGOPeYUndX2UKGgGR0BxsrkdV/+baAdNWQFoCEdAlqK9M0xdp3V9lChoBkdAcKA1hb4agmgHTaABaAhHQJajchW5pal1fZQoaAZHQHChEXHim2toB01IAWgIR0CWo7oBq9GrdX2UKGgGR0BxFz4WUKRdaAdNgwFoCEdAlqT4m1IAfnV9lChoBkdAcWmfNRm9QGgHTZIBaAhHQJali35N47l1fZQoaAZHQHErH4oJAt5oB023AWgIR0CWpZdELH+7dX2UKGgGR0A1txoZhrnDaAdL02gIR0CWpe7p3X7MdX2UKGgGR0BxQiCuloDgaAdNUAFoCEdAlqZF05lvqHV9lChoBkdAbcUGqxTsIGgHTZIBaAhHQJanmAH3UQV1fZQoaAZHQHCiX4CZF5RoB01hAWgIR0CWp+P3BYV7dX2UKGgGR0BsPIa99MK1aAdNhgFoCEdAlqhW+fywwHV9lChoBkdAbTxsCT2WZGgHTS4BaAhHQJarSwt8NQV1fZQoaAZHQG+tgYYR/VloB02OAWgIR0CWq4HQQcxTdX2UKGgGR0BxXsu6ErXlaAdNagFoCEdAlqurPdEb53V9lChoBkdAcM4IfKZDzGgHTXABaAhHQJar4UXYUWV1fZQoaAZHQHJPWmHgxahoB01LAWgIR0CWrDjin5zpdX2UKGgGR0Bwop30PH1faAdNEgFoCEdAlqzncHnln3V9lChoBkdAcA1gssg+yWgHTWEBaAhHQJau+ol2Ned1fZQoaAZHQHAex9G7SRdoB00xAWgIR0CWr8zKcNH6dX2UKGgGR0BMIdXLeQ+2aAdL/mgIR0CWsHw6hg3MdX2UKGgGR0Bv8cRnOB1+aAdNegFoCEdAlrCZT2nKn3V9lChoBkdAa5vZPEbYLGgHTVoBaAhHQJaw1aIN3GJ1fZQoaAZHQGuvVLBbfP5oB01QAWgIR0CWsQA5q/M4dX2UKGgGR0BxtvfsNUfgaAdNYAFoCEdAlrIZ7b+LnHV9lChoBkdAb/pxEORT0mgHTUoBaAhHQJaymejEehh1fZQoaAZHQG+23QD3dsVoB01OAWgIR0CWs3zEaVD8dX2UKGgGR0Bs8GWGATZhaAdNswFoCEdAlrRftx+8XnV9lChoBkdAcQM/IsAeaWgHTTUBaAhHQJa2Bp9JBgN1fZQoaAZHQHEVrPhQ3xZoB00mAWgIR0CWtit1IRRNdX2UKGgGR0BxN3PJJXhgaAdNOAFoCEdAlrZjCpFTenV9lChoBkdAcS4hAnlXBGgHTVQBaAhHQJa27rkbPyF1fZQoaAZHQG/dtuUD+zdoB017AWgIR0CWuw/cWTHKdX2UKGgGR0Butmj2zv7WaAdNvQFoCEdAlrvrL+xW1nV9lChoBkdAbi3KdQO4G2gHTS8BaAhHQJa8ITwlSjx1fZQoaAZHQHHGImXw9aFoB00uAWgIR0CWvDgzguRLdX2UKGgGR0Bv/xAt4A0baAdNQAFoCEdAlr2RzijtX3V9lChoBkdAaexqLS/j82gHTZMBaAhHQJa/Kr1dxAB1fZQoaAZHQHNMGUB4lhRoB01tAWgIR0CWv5fb9If9dX2UKGgGR0BxcrMvAXVLaAdNLAFoCEdAlsCLB0p3HXV9lChoBkdAawVOfukUK2gHTVUBaAhHQJbBI6Kcd5p1fZQoaAZHQHA3QFHJ9y9oB01rAWgIR0CWwWffoA4odX2UKGgGR0BAu6vaDf3waAdL9GgIR0CWwrSxJNCadX2UKGgGR0BJ8u9WZJCjaAdLzWgIR0CWxZe8wpOOdX2UKGgGR0BwXptxdY4iaAdNWAFoCEdAlsZa3y7PIHV9lChoBkdAbgRFXq7iAGgHTWIBaAhHQJbGhAv+OwR1fZQoaAZHQHH4UvsZ5zJoB01+AWgIR0CWx2Esrd30dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Fri May 24 14:06:39 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c81c23cf283bebaf91727fa706913e934a8e65d55e38ba8d6761d0b03fd91c27
3
+ size 148076
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3662472c20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3662472cb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3662472d40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3662472dd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3662472e60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3662472ef0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3662472f80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3662473010>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f36624730a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3662473130>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36624731c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3662473250>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f366260b840>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1719470598904852546,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECbnT0aQ4g/5ugOPRAIoL5v8P09RoKFPAAAAAAAAAAAAFvqvNmvCT76sIA9cSxdvrOUlDyoD3m9AAAAAAAAAACaO8281eIIP/okNr4wXRi+mK+avamUnD0AAAAAAAAAAABBFL5mT4E+RO6FPe5fTb4qqyc9gpLlvAAAAAAAAAAAgAhKvrp9vT+BGBm/STSYvQpDTr7bXJu+AAAAAAAAAADTX2Y+8UsXvSKjb7pfOBw5n4iGvv4jpTkAAIA/AACAP/rHR75DcTQ/PSOHPaXEmr6h+5e71vRyPAAAAAAAAAAAzaxDO35ZtT/A1Zo+7KeFPnFLYrs2Soy9AAAAAAAAAABt7gK+zK9jP8mlkz0/01O+Ckuiu1mTJD0AAAAAAAAAABrKQj2Oja+8RrSuvYdUnL3clwo+s2DPPgAAgD8AAIA/M+bTvEuC4z5rxPq8NJVyvnz2JL3mqoi9AAAAAAAAAADNg+E9dUsVPhl5Bb59OEe+L04gvQiQvrwAAAAAAAAAAAr9V74HKA8/m/wqPiTMXb5WGBm8AqqSvAAAAAAAAAAAgCNQPbbbnj+2DEg+oF63vgUTyz1rK6Q9AAAAAAAAAAAQJU6+VBjWvK068Lpzini5JzI5PhNvHjoAAIA/AACAP83aZD1x5Nc9Wow6vV0+Zr60tZy7LjMzvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJGlr/KhcuMAWyUTTABjAF0lEdAlj/ZeZ5Rj3V9lChoBkdAbkf8WsRxtGgHTW8CaAhHQJZCfT3IuGt1fZQoaAZHQEkg+N96TntoB0v9aAhHQJZCiwnpjc51fZQoaAZHQG+u3lCCz1NoB02NAWgIR0CWQuX8O09hdX2UKGgGR0Bt2ag5BC2MaAdNdQJoCEdAlkLxg3Lmp3V9lChoBkdAbRowztTkyWgHTZkBaAhHQJZEI9RrJsB1fZQoaAZHQG/mofCAMDxoB01RAWgIR0CWRM7L+xW1dX2UKGgGR0BuX0rwvxpdaAdNbwFoCEdAlkZ3lfZ26nV9lChoBkdAcR3UYKpkw2gHTXcBaAhHQJZjqD+R5kd1fZQoaAZHQF/wKLKmsNloB03oA2gIR0CWZC1RLsa9dX2UKGgGR0BxNDwPRRdhaAdNcgFoCEdAlmXRIz3yqnV9lChoBkdAcZP1schkiGgHTVADaAhHQJZoommce8x1fZQoaAZHQHCmREroW59oB03LAmgIR0CWaK9zwMH9dX2UKGgGR0Bwm/jrAxi5aAdNWAFoCEdAlmmXiBGx2XV9lChoBkdAcH0619fCymgHTWACaAhHQJZp3/WDpTx1fZQoaAZHQG0aTTfBN21oB005AmgIR0CWaicqvvBrdX2UKGgGR0BuePFrEcbSaAdNcQFoCEdAlmpbjT8YRHV9lChoBkdAcc4tQ9A5aWgHTXIBaAhHQJZqvkxREWt1fZQoaAZHQGCliIcinpBoB03oA2gIR0CWa5aGYa5xdX2UKGgGR0BuFeGwiaAnaAdN1wFoCEdAlmxdYSxqwnV9lChoBkdAcQL8nNPgvWgHTYEBaAhHQJZs7zxwyZd1fZQoaAZHQG9xhlcyFf1oB02DAWgIR0CWbno8p1A8dX2UKGgGR0BsXgYHgP3BaAdN7gFoCEdAlm7lu3trsXV9lChoBkdAcP6zEJjUeGgHTSoBaAhHQJZwTH0btJF1fZQoaAZHQHCMAt4A0bdoB036AWgIR0CWcItGNJe3dX2UKGgGR0Bvj6IDYAbRaAdNLQFoCEdAlnC3e7+T/3V9lChoBkdAO+lZkkKNQ2gHS+hoCEdAlnOrEgntwHV9lChoBkdAcTg0LMLWqmgHTWUBaAhHQJZzyugYgq51fZQoaAZHQG6dzYukDZFoB01AAWgIR0CWdIj9n9NvdX2UKGgGR0BGfKgAZKnOaAdNJQFoCEdAlnSfCuU2UHV9lChoBkdAbZEWuX/o7mgHTWwBaAhHQJZ2G/Zdv891fZQoaAZHQHFLHSSeRPpoB01gAWgIR0CWdv6VMVUNdX2UKGgGR0BvTe5z5oGqaAdNbQFoCEdAlncUGFBY3nV9lChoBkdAMpxbjcVQAWgHTT4BaAhHQJZ9CIAOrhl1fZQoaAZHQHFbVTzd1uBoB02rAWgIR0CWfUyxA0KrdX2UKGgGR0Bx2S27Wd3CaAdNkgFoCEdAln5AXZXdTHV9lChoBkdAcIWRuTA31mgHTY0BaAhHQJZ+kmjTKDF1fZQoaAZHQFAAQpWmxdJoB0vNaAhHQJZ/ECA+Y+l1fZQoaAZHQG7biJoCdSVoB00zAmgIR0CWf5UPQOWjdX2UKGgGR0BwuFe0G/vfaAdNmwFoCEdAloDtQsPJ73V9lChoBkdAcAUVSXMQmWgHTU8BaAhHQJaB/FKkEcN1fZQoaAZHQHCNJcgQpWpoB01HAWgIR0CWgm3gk1MudX2UKGgGR0BxfV3eN1hcaAdNXgFoCEdAloJ4cJdB0XV9lChoBkdAcMj/pdKNAGgHTXcCaAhHQJaDX0Fr2xp1fZQoaAZHQHCm4AOrhitoB00+AWgIR0CWhGUSZjQRdX2UKGgGR0BwyHZK3/gjaAdNXAFoCEdAloVK0dBBzHV9lChoBkdAcI+AMDwH7mgHTRECaAhHQJaFirksBhh1fZQoaAZHQHDIxHww0wdoB026AWgIR0CWhj3qAz55dX2UKGgGR0BwSk3uNPxhaAdN6wJoCEdAlokmJWNm2HV9lChoBkdAcTuLofSx7mgHTT8BaAhHQJaJ9X/5tWN1fZQoaAZHQG7BP2GqPwNoB009AWgIR0CWizkVeruIdX2UKGgGR0BwaPwc5sCUaAdNXgFoCEdAlotGfK6nSHV9lChoBkdAcAaDR+jM3mgHTXUBaAhHQJagWGL1mJ51fZQoaAZHQHBJAAdXDFZoB01kAWgIR0CWoGOPeYUndX2UKGgGR0BxsrkdV/+baAdNWQFoCEdAlqK9M0xdp3V9lChoBkdAcKA1hb4agmgHTaABaAhHQJajchW5pal1fZQoaAZHQHChEXHim2toB01IAWgIR0CWo7oBq9GrdX2UKGgGR0BxFz4WUKRdaAdNgwFoCEdAlqT4m1IAfnV9lChoBkdAcWmfNRm9QGgHTZIBaAhHQJali35N47l1fZQoaAZHQHErH4oJAt5oB023AWgIR0CWpZdELH+7dX2UKGgGR0A1txoZhrnDaAdL02gIR0CWpe7p3X7MdX2UKGgGR0BxQiCuloDgaAdNUAFoCEdAlqZF05lvqHV9lChoBkdAbcUGqxTsIGgHTZIBaAhHQJanmAH3UQV1fZQoaAZHQHCiX4CZF5RoB01hAWgIR0CWp+P3BYV7dX2UKGgGR0BsPIa99MK1aAdNhgFoCEdAlqhW+fywwHV9lChoBkdAbTxsCT2WZGgHTS4BaAhHQJarSwt8NQV1fZQoaAZHQG+tgYYR/VloB02OAWgIR0CWq4HQQcxTdX2UKGgGR0BxXsu6ErXlaAdNagFoCEdAlqurPdEb53V9lChoBkdAcM4IfKZDzGgHTXABaAhHQJar4UXYUWV1fZQoaAZHQHJPWmHgxahoB01LAWgIR0CWrDjin5zpdX2UKGgGR0Bwop30PH1faAdNEgFoCEdAlqzncHnln3V9lChoBkdAcA1gssg+yWgHTWEBaAhHQJau+ol2Ned1fZQoaAZHQHAex9G7SRdoB00xAWgIR0CWr8zKcNH6dX2UKGgGR0BMIdXLeQ+2aAdL/mgIR0CWsHw6hg3MdX2UKGgGR0Bv8cRnOB1+aAdNegFoCEdAlrCZT2nKn3V9lChoBkdAa5vZPEbYLGgHTVoBaAhHQJaw1aIN3GJ1fZQoaAZHQGuvVLBbfP5oB01QAWgIR0CWsQA5q/M4dX2UKGgGR0BxtvfsNUfgaAdNYAFoCEdAlrIZ7b+LnHV9lChoBkdAb/pxEORT0mgHTUoBaAhHQJaymejEehh1fZQoaAZHQG+23QD3dsVoB01OAWgIR0CWs3zEaVD8dX2UKGgGR0Bs8GWGATZhaAdNswFoCEdAlrRftx+8XnV9lChoBkdAcQM/IsAeaWgHTTUBaAhHQJa2Bp9JBgN1fZQoaAZHQHEVrPhQ3xZoB00mAWgIR0CWtit1IRRNdX2UKGgGR0BxN3PJJXhgaAdNOAFoCEdAlrZjCpFTenV9lChoBkdAcS4hAnlXBGgHTVQBaAhHQJa27rkbPyF1fZQoaAZHQG/dtuUD+zdoB017AWgIR0CWuw/cWTHKdX2UKGgGR0Butmj2zv7WaAdNvQFoCEdAlrvrL+xW1nV9lChoBkdAbi3KdQO4G2gHTS8BaAhHQJa8ITwlSjx1fZQoaAZHQHHGImXw9aFoB00uAWgIR0CWvDgzguRLdX2UKGgGR0Bv/xAt4A0baAdNQAFoCEdAlr2RzijtX3V9lChoBkdAaexqLS/j82gHTZMBaAhHQJa/Kr1dxAB1fZQoaAZHQHNMGUB4lhRoB01tAWgIR0CWv5fb9If9dX2UKGgGR0BxcrMvAXVLaAdNLAFoCEdAlsCLB0p3HXV9lChoBkdAawVOfukUK2gHTVUBaAhHQJbBI6Kcd5p1fZQoaAZHQHA3QFHJ9y9oB01rAWgIR0CWwWffoA4odX2UKGgGR0BAu6vaDf3waAdL9GgIR0CWwrSxJNCadX2UKGgGR0BJ8u9WZJCjaAdLzWgIR0CWxZe8wpOOdX2UKGgGR0BwXptxdY4iaAdNWAFoCEdAlsZa3y7PIHV9lChoBkdAbgRFXq7iAGgHTWIBaAhHQJbGhAv+OwR1fZQoaAZHQHH4UvsZ5zJoB01+AWgIR0CWx2Esrd30dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f469a1dbcac1c8f6d95d76cd12d2a015d230b7af4c26410f39352290c9e2af88
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33d8e3e5ac1946978a279ef7d8905f418da6d9111105276bab8242a62c0a3512
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Fri May 24 14:06:39 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (179 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 226.43546750000002, "std_reward": 60.12643754429526, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-27T07:07:23.301885"}