TomokiFujihara
commited on
Commit
·
c505fde
1
Parent(s):
79ce989
Upload model
Browse files- config.json +16 -0
- configuration.py +24 -0
- model.safetensors +3 -0
- modeling.py +52 -0
config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"OffensivenessEstimationModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration.OffensivenessEstimationConfig",
|
7 |
+
"AutoModel": "modeling.OffensivenessEstimationModel"
|
8 |
+
},
|
9 |
+
"dropout_rate": 0.1,
|
10 |
+
"language_model": "studio-ousia/luke-japanese-base-lite",
|
11 |
+
"model_type": "offensiveness_estimation",
|
12 |
+
"output_class_num": 11,
|
13 |
+
"reinit_n_layers": 1,
|
14 |
+
"torch_dtype": "float32",
|
15 |
+
"transformers_version": "4.35.2"
|
16 |
+
}
|
configuration.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
class OffensivenessEstimationConfig(PretrainedConfig):
|
5 |
+
model_type = "offensiveness_estimation"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
language_model: str = 'studio-ousia/luke-japanese-base-lite',
|
10 |
+
output_class_num: int = 11,
|
11 |
+
reinit_n_layers: int = 1,
|
12 |
+
dropout_rate: float = 0.1,
|
13 |
+
**kwargs,
|
14 |
+
):
|
15 |
+
# if block_type not in ["basic", "bottleneck"]:
|
16 |
+
# raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.")
|
17 |
+
# if stem_type not in ["", "deep", "deep-tiered"]:
|
18 |
+
# raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.")
|
19 |
+
|
20 |
+
self.language_model = language_model
|
21 |
+
self.output_class_num = output_class_num
|
22 |
+
self.reinit_n_layers = reinit_n_layers
|
23 |
+
self.dropout_rate = dropout_rate
|
24 |
+
super().__init__(**kwargs)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63c3389d4b0f0650fc41ec64abf8fcecc9b70a7deaad8cf5215dbbdbc983b25a
|
3 |
+
size 532341340
|
modeling.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel
|
2 |
+
from .configuration import *
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch
|
6 |
+
from transformers import AutoModel
|
7 |
+
|
8 |
+
class OffensivenessEstimationModel(PreTrainedModel):
|
9 |
+
config_class = OffensivenessEstimationConfig
|
10 |
+
|
11 |
+
def __init__(self, config):
|
12 |
+
super().__init__(config)
|
13 |
+
self.text_encoder = PretrainedLanguageModel(config)
|
14 |
+
self.decoder = nn.Sequential(
|
15 |
+
nn.Dropout(p=config.dropout_rate),
|
16 |
+
nn.Linear(768, config.output_class_num)
|
17 |
+
)
|
18 |
+
|
19 |
+
def forward(self, ids, mask):
|
20 |
+
h = self.text_encoder(ids, mask)
|
21 |
+
output = self.decoder(h)
|
22 |
+
return output
|
23 |
+
|
24 |
+
class PretrainedLanguageModel(PreTrainedModel):
|
25 |
+
config_class = OffensivenessEstimationConfig
|
26 |
+
|
27 |
+
def __init__(self, config):
|
28 |
+
super().__init__(config)
|
29 |
+
self.language_model = AutoModel.from_pretrained(config.language_model)
|
30 |
+
self.reinit_n_layers = config.reinit_n_layers
|
31 |
+
if self.reinit_n_layers > 0:
|
32 |
+
self._do_reinit()
|
33 |
+
|
34 |
+
def _do_reinit(self):
|
35 |
+
# Re-init last n layers.
|
36 |
+
for layer in self.language_model.encoder.layer[-1*self.reinit_n_layers:]:
|
37 |
+
for module in layer.modules():
|
38 |
+
if isinstance(module, nn.Linear):
|
39 |
+
module.weight.data.normal_(mean=0.0, std=self.language_model.config.initializer_range)
|
40 |
+
if module.bias is not None:
|
41 |
+
module.bias.data.zero_()
|
42 |
+
elif isinstance(module, nn.Embedding):
|
43 |
+
module.weight.data.normal_(mean=0.0, std=self.language_model.config.initializer_range)
|
44 |
+
if module.padding_idx is not None:
|
45 |
+
module.weight.data[module.padding_idx].zero_()
|
46 |
+
elif isinstance(module, nn.LayerNorm):
|
47 |
+
module.bias.data.zero_()
|
48 |
+
module.weight.data.fill_(1.0)
|
49 |
+
|
50 |
+
def forward(self, ids, mask):
|
51 |
+
output = self.language_model(ids, attention_mask=mask)
|
52 |
+
return output[0][:,0,:]
|