End of training
Browse files- README.md +77 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-multilingual-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- recall
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: multibert1110_lrate10b16
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# multibert1110_lrate10b16
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.5469
|
22 |
+
- Precisions: 0.8548
|
23 |
+
- Recall: 0.8081
|
24 |
+
- F-measure: 0.8287
|
25 |
+
- Accuracy: 0.9073
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 0.0001
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 14
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:|
|
56 |
+
| 0.6155 | 1.0 | 236 | 0.4117 | 0.8520 | 0.6645 | 0.6887 | 0.8660 |
|
57 |
+
| 0.3587 | 2.0 | 472 | 0.3608 | 0.7877 | 0.7387 | 0.7562 | 0.8864 |
|
58 |
+
| 0.2315 | 3.0 | 708 | 0.3620 | 0.8962 | 0.7550 | 0.7918 | 0.8977 |
|
59 |
+
| 0.1551 | 4.0 | 944 | 0.4640 | 0.8523 | 0.7478 | 0.7834 | 0.8931 |
|
60 |
+
| 0.1117 | 5.0 | 1180 | 0.4567 | 0.8269 | 0.7425 | 0.7712 | 0.8958 |
|
61 |
+
| 0.0885 | 6.0 | 1416 | 0.4916 | 0.8679 | 0.7882 | 0.8206 | 0.9037 |
|
62 |
+
| 0.0646 | 7.0 | 1652 | 0.5469 | 0.8548 | 0.8081 | 0.8287 | 0.9073 |
|
63 |
+
| 0.0385 | 8.0 | 1888 | 0.5638 | 0.8665 | 0.7813 | 0.8064 | 0.8999 |
|
64 |
+
| 0.0262 | 9.0 | 2124 | 0.5864 | 0.8872 | 0.7415 | 0.7881 | 0.9045 |
|
65 |
+
| 0.0231 | 10.0 | 2360 | 0.5984 | 0.8577 | 0.7582 | 0.7966 | 0.9017 |
|
66 |
+
| 0.0114 | 11.0 | 2596 | 0.6513 | 0.8594 | 0.7532 | 0.7930 | 0.9032 |
|
67 |
+
| 0.0119 | 12.0 | 2832 | 0.6270 | 0.8717 | 0.7591 | 0.8007 | 0.9034 |
|
68 |
+
| 0.006 | 13.0 | 3068 | 0.6814 | 0.8733 | 0.7411 | 0.7864 | 0.9034 |
|
69 |
+
| 0.0041 | 14.0 | 3304 | 0.6782 | 0.8722 | 0.7505 | 0.7943 | 0.9040 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.34.0
|
75 |
+
- Pytorch 2.0.1+cu118
|
76 |
+
- Datasets 2.14.5
|
77 |
+
- Tokenizers 0.14.1
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 667152553
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53e00ec5fc77c2a71aacb2b3bb02b245ef6ca38acd0afdff97190803c9bdcf8b
|
3 |
size 667152553
|