{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78169e501750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78169e5017e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78169e501870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78169e501900>", "_build": "<function ActorCriticPolicy._build at 0x78169e501990>", "forward": "<function ActorCriticPolicy.forward at 0x78169e501a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78169e501ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78169e501b40>", "_predict": "<function ActorCriticPolicy._predict at 0x78169e501bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78169e501c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78169e501cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78169e501d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x781641345840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731876375197384871, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD3aT1SfrO7ZvHhvDccJT3KjQM9hksJvgAAgD8AAIA/ZjsAPf6zUj9tgum7oPUdv3vVRD1KzCS9AAAAAAAAAAD6v82+Yi8QP71v8TsA+Ai/AD7XvpLTZDwAAAAAAAAAAHPpaD5Xijc/ck6QPsVZJ7/jyZ0+JbYlvQAAAAAAAAAAmgd+PezZ07kF+j4zfKO8r5sRADoe38OzAACAPwAAAADaUJQ9+0+hP77pjD6qPRi/n7jCPQNn5DwAAAAAAAAAAJpTJb4hgom8uggjO5kNgjkQrfo9EvlkugAAgD8AAIA/bSNSvnwPAz1GS6663aiVOdoelL4I5g06AACAPwAAgD8G9UE+n2gLPjI/4b2ij5u+u7Q/PWCe1TwAAAAAAAAAAJrXz7yw7cI/a7oWvoV2wTxd3f86JQtnPQAAAAAAAAAAgJJyvS/KfT2iKKE9GjZOvtV5gLwRIpS7AAAAAAAAAACGM4U+KLcePzt7Ar25g+++ww8XPiViGr4AAAAAAAAAAICaH77XrUI+kEY8PpJ4Sb53oxO9c3OaPAAAAAAAAAAA4IptvoOdHz1ZDC47KrK1uQAcu77DVMk6AACAPwAAgD8zIPq9KRwGOYPNjje9/gC0Twzyu0rOrbYAAIA/AACAP5qv/LwpaF26C/nusroIP7DxhSQ60l/CMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGk8W9DhLqMAWyUS/KMAXSUR0CbfLpOerdWdX2UKGgGR0By8jLU1AJLaAdNDQFoCEdAm33FeOXE63V9lChoBkdAcODZVXFLnWgHS85oCEdAm3+/xUedTnV9lChoBkdAcI5eenQ6ZGgHS95oCEdAm4B4pDu0C3V9lChoBkdAcAUM36yjYmgHS+RoCEdAm4CUp3HJcXV9lChoBkdAcJ6JKaoddWgHS69oCEdAm4FZI1+AmXV9lChoBkdAb30Ae7tiQWgHS8FoCEdAm4HYr8R+SnV9lChoBkdAY1ANo8IRiGgHTegDaAhHQJuETltCRfZ1fZQoaAZHQHKoAgkka/BoB00JAWgIR0CbhL8aXKKYdX2UKGgGR0Bzzg4S6DoRaAdL7GgIR0CbhOhxHXmOdX2UKGgGR0BvONXLeQ+2aAdNMANoCEdAm4UCgTRIBnV9lChoBkdAcOdi97F85WgHS+poCEdAm4Xf9UCJXXV9lChoBkdAcc9pZfUnX2gHS7RoCEdAm4aqfJ3gUHV9lChoBkdAbOGjIq9XcWgHS9NoCEdAm4cFAmiQDHV9lChoBkdAczOvovBacWgHTYQBaAhHQJuHYqAjIJZ1fZQoaAZHQGKngFPi1iRoB03oA2gIR0Cbh3nf2saLdX2UKGgGR0ByPD6BRQ7+aAdL4GgIR0CbiLQwblzVdX2UKGgGR0BwSucZtNzsaAdL2WgIR0CbiOhPTG5udX2UKGgGR0BxSKGwiaAnaAdN/gJoCEdAm4kB1PnB+HV9lChoBkdAc7zHqeK8+WgHTSIBaAhHQJuJ9MHryDt1fZQoaAZHQHKyiwfQrtpoB0vRaAhHQJuK+4EwFkh1fZQoaAZHQG1jufNA1NxoB0vOaAhHQJuLHRlYlpp1fZQoaAZHQHHngzxgAp9oB0vmaAhHQJuLQ9B8hLZ1fZQoaAZHQHHLk3Ov+wVoB0vYaAhHQJuLWScLBsR1fZQoaAZHQHGD4u01IiFoB0vIaAhHQJuMfTH80k51fZQoaAZHQHBNgieNDMNoB0vGaAhHQJuMxElVtGd1fZQoaAZHQHAi5NwiqyZoB0vNaAhHQJuNY47zTWp1fZQoaAZHQHDPO3QUpNNoB0vcaAhHQJuNw4ZMtbt1fZQoaAZHQHFwWGdqcmVoB00fAWgIR0Cbjl+C9RJmdX2UKGgGR0BjaKlLvkR0aAdN6ANoCEdAm459fG+9J3V9lChoBkdAbOoyeqaPS2gHS9BoCEdAm47Gukk8inV9lChoBkdAb3Vr3TNMXmgHS85oCEdAm48B3FDOT3V9lChoBkdAcuM/oaDPGGgHS9NoCEdAm48MjNY8uHV9lChoBkdAbYjQ40dilWgHS79oCEdAm4+Av6CUYHV9lChoBkdAcH9rE9+w1WgHS79oCEdAm5DG51/2CnV9lChoBkdAcRKrDZUT+WgHS91oCEdAm5FVtCRfW3V9lChoBkdAcoo4nWrfcmgHS71oCEdAm5I9jwx33nV9lChoBkdAcDK6dUbT+mgHS8RoCEdAm5MwJTl1bXV9lChoBkdAcVPRwqAjIWgHTRoBaAhHQJuTh8OTaCd1fZQoaAZHQHHBOzD4xlBoB00sAWgIR0CblD/7iyY5dX2UKGgGR0ByfAHVwxWUaAdLw2gIR0CblGJhfBvadX2UKGgGR0BxJQ64lQdkaAdL8WgIR0CblQuRs/IKdX2UKGgGR0BhSO1lXiiqaAdN6ANoCEdAm5UUTL4etHV9lChoBkdAbpFP9kz412gHS8VoCEdAm5UU1dgOSXV9lChoBkdAYMBGG21D0GgHTegDaAhHQJuVgwi7kGR1fZQoaAZHQHLp3q3VkMFoB0vzaAhHQJuWMDDCP6t1fZQoaAZHQHKZcZpBX0ZoB0vpaAhHQJuWZz0Yj0N1fZQoaAZHQHCttcfNiYtoB0u6aAhHQJuW3L0SRKZ1fZQoaAZHQHIaBTS9du5oB0vXaAhHQJuXGvW6K+B1fZQoaAZHQHEFdMj/uLJoB0vEaAhHQJuX1kvsZ511fZQoaAZHQHDU7rgOz6doB0u9aAhHQJuYXF2mpER1fZQoaAZHQG6zMAmzByloB0vcaAhHQJuaF8twrDt1fZQoaAZHQHCeukHlfZ5oB0v5aAhHQJuaTuPV/c51fZQoaAZHQHBVUrf+CK9oB0vMaAhHQJuabH93r2R1fZQoaAZHQHFr8VtXPqtoB0vkaAhHQJuadbTtsvZ1fZQoaAZHQG+zCtaIN3JoB0vWaAhHQJuaqzKLbYd1fZQoaAZHQHGPUNz8xbloB0vmaAhHQJubHy5I6Kd1fZQoaAZHQG93sQVbiZRoB0vCaAhHQJublLqUu+R1fZQoaAZHQG86JIlMRHxoB0vRaAhHQJub0gDA8CB1fZQoaAZHQG828LronrpoB0u6aAhHQJub+gezUqh1fZQoaAZHQHF/bIcR15loB0vBaAhHQJudrmp2ll91fZQoaAZHQHHqx46fapRoB0vnaAhHQJueDP7el9B1fZQoaAZHQHGM3wPRRdhoB0vhaAhHQJufvCIk7fZ1fZQoaAZHQFD0aIvalDZoB0vAaAhHQJuhSROk+HJ1fZQoaAZHQHAR6Oo5xR5oB0vGaAhHQJuhugkC3gF1fZQoaAZHQHI3cVpKzzFoB0veaAhHQJuiUaWHDaZ1fZQoaAZHQHDRfgR9PUNoB0vYaAhHQJuilL39JjF1fZQoaAZHQG9c7cXWOIZoB0vOaAhHQJujNwGW2PV1fZQoaAZHQHGTRwl0HQhoB0u8aAhHQJujb5ULlV91fZQoaAZHQHHoFPi1iONoB0vtaAhHQJuj0Wznied1fZQoaAZHQG4rcmjTKDFoB0vlaAhHQJulehAWznl1fZQoaAZHQHCMGo3rD65oB0vTaAhHQJumeinHead1fZQoaAZHQHGEKl+EytVoB00QAWgIR0CbpqAIIF/ydX2UKGgGR0BxKEQBgeA/aAdNDAFoCEdAm6icifQKKHV9lChoBkdAcET8GcFyJmgHS8xoCEdAm6ka/IsAenV9lChoBkdAc0SfUnXummgHS8toCEdAm6oJ+x4Y8HV9lChoBkdAbjO495hScmgHS+loCEdAm6ppRoAXEnV9lChoBkdAcKoUtI0652gHS81oCEdAm6qb7j1f3XV9lChoBkdAcWbhYeT3ZmgHS7NoCEdAm6ttw71ZknV9lChoBkdAb1VntfG+9WgHS+toCEdAm6waPGQ0XXV9lChoBkdAYzoa86FM7GgHTegDaAhHQJutNLuhK151fZQoaAZHQHGI1F2FFlVoB0vPaAhHQJuthgogFHJ1fZQoaAZHQHMndV7x/d9oB0vbaAhHQJutwHpr1ul1fZQoaAZHQGODYh2W6bxoB03oA2gIR0CbryaNuLrHdX2UKGgGR0Bi1GMyad+YaAdN6ANoCEdAm6+akdmxuHV9lChoBkdAcrpOz6ab4WgHTWIBaAhHQJuvrlbNbC91fZQoaAZHQHA7tJrcj7hoB0vTaAhHQJuv/dRBNVR1fZQoaAZHQHFJ55JK8L9oB0u/aAhHQJuwM6GQCCB1fZQoaAZHQHFhsKLKmsNoB0v5aAhHQJuwovAXVLB1fZQoaAZHQG9js90Rvm5oB0vMaAhHQJuw3wjMV1x1fZQoaAZHQG+E4GD+R5loB0vSaAhHQJux2YqoZQ51fZQoaAZHQHJoHP3SKFZoB0vqaAhHQJux1xffGdZ1fZQoaAZHQHExNcv/R3NoB0vBaAhHQJuzBR2r4nF1fZQoaAZHQHFfWDlHSWtoB0vsaAhHQJuzExL0z0p1fZQoaAZHQHFQ4q9XcQBoB0vpaAhHQJuz1HiFTNt1fZQoaAZHQHDQ0dV/+bVoB0viaAhHQJu0Hra/RE51fZQoaAZHQHDdylabF0hoB0vQaAhHQJu07LzPKMh1fZQoaAZHQHB5h1klNURoB0vAaAhHQJu09glWwNd1fZQoaAZHQG7q9LxqfvpoB0vCaAhHQJu1i3NLUTd1fZQoaAZHQGaPacAiml9oB03oA2gIR0CbtcZ00WM1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 329, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |