Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1447.23 +/- 38.25
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ce6096031d9a590efe60ce3baad0c6b115200d04659c033f5c3cbff13330d48
|
3 |
+
size 129065
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f3be5b280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f3be5b310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f3be5b3a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f3be5b430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4f3be5b4c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4f3be5b550>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f3be5b5e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4f3be5b670>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f3be5b700>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f3be5b790>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f3be5b820>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4f3be539c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1670837316671408560,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI4iJr8GIEM/BIWVPuJPQj885dW+r3FwP+7d6b1ihJu+rlSIP4yx1b4+9Ci9TKEuPuq8XT9mk++/7CpUP0mTYL/POZM/VXuqv8j3kz5KdXu9GyunP01QyT8h64C/UjsiPKxSYj8G3uw+Llz2Pg9gt7/JOrC+nmOGPpg4ET+4yVY/g5kQQPK56D9xag4+4VSdv1qjzT72pD3ANU6Uv2uCVD/+QxM/mqepv0E9iT98Uj6/DZu6P5Qlq7/fpzU/PcYLvl2NEb+3xWfA52vKPoXgs7/FyJC/Bt7sPjECBcCWsTI/MwGMv3gJZz4DDhQ/NWJNP1TJh7+709c9aQHsPcr42TxaweQ+FPTfv33Nb79a8B/AEqnCv+ydXrwXXEQ+rBQ2P+JMnL4zhli+GRwzP7uv1jym0kW/oSGDvxDQDr8AIKE+xciQvwbe7D4uXPY+lrEyP/ogAL9oyL4+z+sGP0AFwz/1SoW9rLx0P2Fplj4h7Ae/wQ4xP6vcmT/ojZ2/q5mBvAYFgj1O9rw/wNbcPmaNoT8wKqA/COlYP8DzHT+/tKW+B4hSv/VKjz0rlIi+hYMTP8XIkL8G3uw+Llz2PpaxMj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACY/Ag2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2r/3PAAAAABPrgDAAAAAAOTiEjwAAAAAC2v5PwAAAACx+Us8AAAAAFZj2z8AAAAAcaHNvQAAAACrpty/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc9qaNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDAqMr0AAAAA8S/1vwAAAAClZFS9AAAAAKgg5j8AAAAA7ovKPQAAAADBBQBAAAAAAJldFz0AAAAAiBvjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHb+CTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDU3cC9AAAAAAU8+L8AAAAA6fRePQAAAAC48v4/AAAAAL1fNzwAAAAAesHjPwAAAAD7Y5g9AAAAAJod+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYD4e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjt+bPQAAAADJle6/AAAAAKSgn70AAAAAyQXmPwAAAAC1i4c9AAAAAPPp7T8AAAAA/EItvQAAAABTy+2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcDQtwrDqKMAWyUTegDjAF0lEdAqwV9srNGE3V9lChoBkdAlwBnE61b7mgHTegDaAhHQKsFuGKyfL91fZQoaAZHQJPkMmQbMotoB03oA2gIR0CrBoA3kxREdX2UKGgGR0CTd0vH93r2aAdN6ANoCEdAqwc7VWjoIXV9lChoBkdAlYwTQVsUI2gHTegDaAhHQKsS8IKMNtt1fZQoaAZHQJXLpVKf4AVoB03oA2gIR0CrEyoakyk9dX2UKGgGR0CVwC7l7tzCaAdN6ANoCEdAqxQT7qIJq3V9lChoBkdAlTEpAIIF/2gHTegDaAhHQKsUx9ORDCx1fZQoaAZHQJVzMqwyIpJoB03oA2gIR0CrIJVUuL75dX2UKGgGR0CJg+scQyylaAdN6ANoCEdAqyDPQ4S6D3V9lChoBkdAlG7s/MW43GgHTegDaAhHQKshnnNgSe11fZQoaAZHQJWoWIacZtNoB03oA2gIR0CrInSNfgJkdX2UKGgGR0CWOOEcKgIyaAdN6ANoCEdAqzBbv7WNFXV9lChoBkdAl40hL9MsYmgHTegDaAhHQKswwufVZs91fZQoaAZHQJYN+94/u9hoB03oA2gIR0CrMZOYx+KCdX2UKGgGR0CXGHT1CgK4aAdN6ANoCEdAqzJIWUKRdXV9lChoBkdAlZOpjQRf4WgHTegDaAhHQKs+FsY2sJZ1fZQoaAZHQJdibrB0p3JoB03oA2gIR0CrPk6QNkOJdX2UKGgGR0CSAwp6hQFcaAdN6ANoCEdAqz8d9a2Wp3V9lChoBkdAk909deIEbGgHTegDaAhHQKs/3bN8ma91fZQoaAZHQJXI+SJTER9oB03oA2gIR0CrS50iQkondX2UKGgGR0CXE75IpYs/aAdN6ANoCEdAq0vYekpI+XV9lChoBkdAl0EfcSGrS2gHTegDaAhHQKtMrXYDklx1fZQoaAZHQJdb3SDyvs9oB03oA2gIR0CrTWF1bJOndX2UKGgGR0CVPkHpKSPmaAdN6ANoCEdAq1krk6tDD3V9lChoBkdAl2j9pRGc4GgHTegDaAhHQKtZY88La251fZQoaAZHQJOoJjDsMRZoB03oA2gIR0CrWkX6AOJ+dX2UKGgGR0CW5c1fE4vOaAdN6ANoCEdAq1sEoa1kUnV9lChoBkdAlxTqAOJ+D2gHTegDaAhHQKtmwjKPn0V1fZQoaAZHQJYG887p3X9oB03oA2gIR0CrZv58Sf16dX2UKGgGR0CWeGmCiAUdaAdN6ANoCEdAq2fAKhL5AXV9lChoBkdAledOWa+ev2gHTegDaAhHQKtokKKpDNR1fZQoaAZHQJOvbJjlPrRoB03oA2gIR0CrdChWxQizdX2UKGgGR0CP63fShJyyaAdN6ANoCEdAq3RsPWhAW3V9lChoBkdAlAghkiD/VGgHTegDaAhHQKt1Pq59Vm11fZQoaAZHQJIdvKhcqvxoB03oA2gIR0CrdfC2UjcEdX2UKGgGR0CSGid3Sro4aAdN6ANoCEdAq4GolQdjonV9lChoBkdAkmP+4TbnHWgHTegDaAhHQKuB3/HYHxB1fZQoaAZHQJPyicTakARoB03oA2gIR0Crgqe7cwg1dX2UKGgGR0CSMKicG1QZaAdN6ANoCEdAq4N4PRRdhXV9lChoBkdAjitCyprDZWgHTegDaAhHQKuO+1R+BpZ1fZQoaAZHQJVp1U+9rXVoB03oA2gIR0Crj0Cg00m/dX2UKGgGR0CLb15CWu5jaAdN6ANoCEdAq5AbeVLSNXV9lChoBkdAlWXVj7Q9imgHTegDaAhHQKuQ0vt+kQB1fZQoaAZHQJLoV08vEjxoB03oA2gIR0CrnJFQdjoZdX2UKGgGR0CU0dDlYEGJaAdN6ANoCEdAq5zJmPHT7XV9lChoBkdAkwXX752yLWgHTegDaAhHQKudm8r7O3V1fZQoaAZHQJVHZNlAeJZoB03oA2gIR0CrnmjJlrdndX2UKGgGR0CTwVCr92ovaAdN6ANoCEdAq6oTCaZx73V9lChoBkdAlkiP8yeqaWgHTegDaAhHQKuqTXwLE1l1fZQoaAZHQJSG4xFiKBNoB03oA2gIR0CrqxqPOpsHdX2UKGgGR0CTk5sC1Z1WaAdN6ANoCEdAq6vXeWOZLXV9lChoBkdAkABhMSK3u2gHTegDaAhHQKu3qh9srNJ1fZQoaAZHQJJ+ptIkJKJoB03oA2gIR0Crt+UjkdWAdX2UKGgGR0CRzvbpeNT+aAdN6ANoCEdAq7jJEBsAN3V9lChoBkdAjW9FSbYsd2gHTegDaAhHQKu5fIBBAwB1fZQoaAZHQH/MgiNbTttoB03oA2gIR0CrxTO4oZyddX2UKGgGR0B/as4hllK9aAdN6ANoCEdAq8VtmUW2w3V9lChoBkdAkN6+tKZlWmgHTegDaAhHQKvGLICEHt51fZQoaAZHQJIKHwrlNlBoB03oA2gIR0Crxwh9kSVXdX2UKGgGR0CRPmGbCrLhaAdN6ANoCEdAq9KxDqnm73V9lChoBkdAijaqKxcE/2gHTegDaAhHQKvS9v6TGHZ1fZQoaAZHQI8zPuTibUhoB03oA2gIR0Cr09J1aGHpdX2UKGgGR0CLenTAFgUlaAdN6ANoCEdAq9SGNcW0q3V9lChoBkdAgaRKdQO4G2gHTegDaAhHQKvgYaisXBR1fZQoaAZHQIb9Rswco6VoB03oA2gIR0Cr4J0cfeUIdX2UKGgGR0CO41tsN2C/aAdN6ANoCEdAq+F+o99tuXV9lChoBkdAlBgidBjWkWgHTegDaAhHQKviRtHhCMR1fZQoaAZHQJP/SipNsWRoB03oA2gIR0Cr7ltn5BTodX2UKGgGR0CRMXyX2M86aAdN6ANoCEdAq+6TP4VRDXV9lChoBkdAktsw+EAYHmgHTegDaAhHQKvvUgTRIBl1fZQoaAZHQJOi/RXwLE1oB03oA2gIR0Cr8CAz544ZdX2UKGgGR0CUW9VlPJq7aAdN6ANoCEdAq/vMhzNliHV9lChoBkdAliN2mLtNSWgHTegDaAhHQKv8JmNBF/h1fZQoaAZHQJRmTo9s7+1oB03oA2gIR0Cr/PMSkCV9dX2UKGgGR0CUjwEIgNgCaAdN6ANoCEdAq/2rzf779HV9lChoBkdAk8AUedTYNGgHTegDaAhHQKwJgi6g/Tt1fZQoaAZHQJS173qRlpZoB03oA2gIR0CsCbwMhHLBdX2UKGgGR0CWLzxLTQVsaAdN6ANoCEdArAqgMz/IbXV9lChoBkdAlrgdjbzshWgHTegDaAhHQKwLXbSqlxh1fZQoaAZHQJZm0ZiuuA9oB03oA2gIR0CsFyXYUWVNdX2UKGgGR0CWFK/kNnXeaAdN6ANoCEdArBdfSro4dnV9lChoBkdAlfJq3y7PIGgHTegDaAhHQKwYJsKLKmt1fZQoaAZHQJjFeXt0FKVoB03oA2gIR0CsGOp5NXYEdX2UKGgGR0CR+CIwudwvaAdN6ANoCEdArCTDIkqto3V9lChoBkdAk4DwDifg8GgHTegDaAhHQKwlCymhufp1fZQoaAZHQJMvd3HJcPhoB03oA2gIR0CsJfLwnYxtdX2UKGgGR0CVFFahHskZaAdN6ANoCEdArCasZ9/jKnV9lChoBkdAk9ffV7Qb/GgHTegDaAhHQKwyhAIppex1fZQoaAZHQJUQuYF7laNoB03oA2gIR0CsMr2PtD2KdX2UKGgGR0CVsB+vyLAIaAdN6ANoCEdArDOM/dIoVnV9lChoBkdAldJyuQp4KWgHTegDaAhHQKw0XOhTOxB1fZQoaAZHQJRrfmlqJuVoB03oA2gIR0CsQDjzZpSKdX2UKGgGR0CTHac7hegMaAdN6ANoCEdArEBxlz2ex3V9lChoBkdAlSetPtUn5WgHTegDaAhHQKxBOA+6iCd1fZQoaAZHQJTDfLeQ+2VoB03oA2gIR0CsQepnpSrHdX2UKGgGR0CVmAdYW+GoaAdN6ANoCEdArE2AVoHs1XV9lChoBkdAlcKPAO8TSWgHTegDaAhHQKxNwl9Brvd1fZQoaAZHQJJV/rLQokRoB03oA2gIR0CsTqZNO/L1dX2UKGgGR0CXPMKxLTQWaAdN6ANoCEdArE9UwrUb1nVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ba9a182333399f7a6df22c9e2ad32f672b226527823b10e82fc434176e503c3
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a302e59b8a383bc11ffda9ba8655b21afa2fd50e38254c045b3fb8bc8269869
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f3be5b280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f3be5b310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f3be5b3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f3be5b430>", "_build": "<function ActorCriticPolicy._build at 0x7f4f3be5b4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4f3be5b550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f3be5b5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4f3be5b670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f3be5b700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f3be5b790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f3be5b820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4f3be539c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670837316671408560, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI4iJr8GIEM/BIWVPuJPQj885dW+r3FwP+7d6b1ihJu+rlSIP4yx1b4+9Ci9TKEuPuq8XT9mk++/7CpUP0mTYL/POZM/VXuqv8j3kz5KdXu9GyunP01QyT8h64C/UjsiPKxSYj8G3uw+Llz2Pg9gt7/JOrC+nmOGPpg4ET+4yVY/g5kQQPK56D9xag4+4VSdv1qjzT72pD3ANU6Uv2uCVD/+QxM/mqepv0E9iT98Uj6/DZu6P5Qlq7/fpzU/PcYLvl2NEb+3xWfA52vKPoXgs7/FyJC/Bt7sPjECBcCWsTI/MwGMv3gJZz4DDhQ/NWJNP1TJh7+709c9aQHsPcr42TxaweQ+FPTfv33Nb79a8B/AEqnCv+ydXrwXXEQ+rBQ2P+JMnL4zhli+GRwzP7uv1jym0kW/oSGDvxDQDr8AIKE+xciQvwbe7D4uXPY+lrEyP/ogAL9oyL4+z+sGP0AFwz/1SoW9rLx0P2Fplj4h7Ae/wQ4xP6vcmT/ojZ2/q5mBvAYFgj1O9rw/wNbcPmaNoT8wKqA/COlYP8DzHT+/tKW+B4hSv/VKjz0rlIi+hYMTP8XIkL8G3uw+Llz2PpaxMj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACY/Ag2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2r/3PAAAAABPrgDAAAAAAOTiEjwAAAAAC2v5PwAAAACx+Us8AAAAAFZj2z8AAAAAcaHNvQAAAACrpty/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc9qaNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDAqMr0AAAAA8S/1vwAAAAClZFS9AAAAAKgg5j8AAAAA7ovKPQAAAADBBQBAAAAAAJldFz0AAAAAiBvjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHb+CTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDU3cC9AAAAAAU8+L8AAAAA6fRePQAAAAC48v4/AAAAAL1fNzwAAAAAesHjPwAAAAD7Y5g9AAAAAJod+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYD4e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjt+bPQAAAADJle6/AAAAAKSgn70AAAAAyQXmPwAAAAC1i4c9AAAAAPPp7T8AAAAA/EItvQAAAABTy+2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcDQtwrDqKMAWyUTegDjAF0lEdAqwV9srNGE3V9lChoBkdAlwBnE61b7mgHTegDaAhHQKsFuGKyfL91fZQoaAZHQJPkMmQbMotoB03oA2gIR0CrBoA3kxREdX2UKGgGR0CTd0vH93r2aAdN6ANoCEdAqwc7VWjoIXV9lChoBkdAlYwTQVsUI2gHTegDaAhHQKsS8IKMNtt1fZQoaAZHQJXLpVKf4AVoB03oA2gIR0CrEyoakyk9dX2UKGgGR0CVwC7l7tzCaAdN6ANoCEdAqxQT7qIJq3V9lChoBkdAlTEpAIIF/2gHTegDaAhHQKsUx9ORDCx1fZQoaAZHQJVzMqwyIpJoB03oA2gIR0CrIJVUuL75dX2UKGgGR0CJg+scQyylaAdN6ANoCEdAqyDPQ4S6D3V9lChoBkdAlG7s/MW43GgHTegDaAhHQKshnnNgSe11fZQoaAZHQJWoWIacZtNoB03oA2gIR0CrInSNfgJkdX2UKGgGR0CWOOEcKgIyaAdN6ANoCEdAqzBbv7WNFXV9lChoBkdAl40hL9MsYmgHTegDaAhHQKswwufVZs91fZQoaAZHQJYN+94/u9hoB03oA2gIR0CrMZOYx+KCdX2UKGgGR0CXGHT1CgK4aAdN6ANoCEdAqzJIWUKRdXV9lChoBkdAlZOpjQRf4WgHTegDaAhHQKs+FsY2sJZ1fZQoaAZHQJdibrB0p3JoB03oA2gIR0CrPk6QNkOJdX2UKGgGR0CSAwp6hQFcaAdN6ANoCEdAqz8d9a2Wp3V9lChoBkdAk909deIEbGgHTegDaAhHQKs/3bN8ma91fZQoaAZHQJXI+SJTER9oB03oA2gIR0CrS50iQkondX2UKGgGR0CXE75IpYs/aAdN6ANoCEdAq0vYekpI+XV9lChoBkdAl0EfcSGrS2gHTegDaAhHQKtMrXYDklx1fZQoaAZHQJdb3SDyvs9oB03oA2gIR0CrTWF1bJOndX2UKGgGR0CVPkHpKSPmaAdN6ANoCEdAq1krk6tDD3V9lChoBkdAl2j9pRGc4GgHTegDaAhHQKtZY88La251fZQoaAZHQJOoJjDsMRZoB03oA2gIR0CrWkX6AOJ+dX2UKGgGR0CW5c1fE4vOaAdN6ANoCEdAq1sEoa1kUnV9lChoBkdAlxTqAOJ+D2gHTegDaAhHQKtmwjKPn0V1fZQoaAZHQJYG887p3X9oB03oA2gIR0CrZv58Sf16dX2UKGgGR0CWeGmCiAUdaAdN6ANoCEdAq2fAKhL5AXV9lChoBkdAledOWa+ev2gHTegDaAhHQKtokKKpDNR1fZQoaAZHQJOvbJjlPrRoB03oA2gIR0CrdChWxQizdX2UKGgGR0CP63fShJyyaAdN6ANoCEdAq3RsPWhAW3V9lChoBkdAlAghkiD/VGgHTegDaAhHQKt1Pq59Vm11fZQoaAZHQJIdvKhcqvxoB03oA2gIR0CrdfC2UjcEdX2UKGgGR0CSGid3Sro4aAdN6ANoCEdAq4GolQdjonV9lChoBkdAkmP+4TbnHWgHTegDaAhHQKuB3/HYHxB1fZQoaAZHQJPyicTakARoB03oA2gIR0Crgqe7cwg1dX2UKGgGR0CSMKicG1QZaAdN6ANoCEdAq4N4PRRdhXV9lChoBkdAjitCyprDZWgHTegDaAhHQKuO+1R+BpZ1fZQoaAZHQJVp1U+9rXVoB03oA2gIR0Crj0Cg00m/dX2UKGgGR0CLb15CWu5jaAdN6ANoCEdAq5AbeVLSNXV9lChoBkdAlWXVj7Q9imgHTegDaAhHQKuQ0vt+kQB1fZQoaAZHQJLoV08vEjxoB03oA2gIR0CrnJFQdjoZdX2UKGgGR0CU0dDlYEGJaAdN6ANoCEdAq5zJmPHT7XV9lChoBkdAkwXX752yLWgHTegDaAhHQKudm8r7O3V1fZQoaAZHQJVHZNlAeJZoB03oA2gIR0CrnmjJlrdndX2UKGgGR0CTwVCr92ovaAdN6ANoCEdAq6oTCaZx73V9lChoBkdAlkiP8yeqaWgHTegDaAhHQKuqTXwLE1l1fZQoaAZHQJSG4xFiKBNoB03oA2gIR0CrqxqPOpsHdX2UKGgGR0CTk5sC1Z1WaAdN6ANoCEdAq6vXeWOZLXV9lChoBkdAkABhMSK3u2gHTegDaAhHQKu3qh9srNJ1fZQoaAZHQJJ+ptIkJKJoB03oA2gIR0Crt+UjkdWAdX2UKGgGR0CRzvbpeNT+aAdN6ANoCEdAq7jJEBsAN3V9lChoBkdAjW9FSbYsd2gHTegDaAhHQKu5fIBBAwB1fZQoaAZHQH/MgiNbTttoB03oA2gIR0CrxTO4oZyddX2UKGgGR0B/as4hllK9aAdN6ANoCEdAq8VtmUW2w3V9lChoBkdAkN6+tKZlWmgHTegDaAhHQKvGLICEHt51fZQoaAZHQJIKHwrlNlBoB03oA2gIR0Crxwh9kSVXdX2UKGgGR0CRPmGbCrLhaAdN6ANoCEdAq9KxDqnm73V9lChoBkdAijaqKxcE/2gHTegDaAhHQKvS9v6TGHZ1fZQoaAZHQI8zPuTibUhoB03oA2gIR0Cr09J1aGHpdX2UKGgGR0CLenTAFgUlaAdN6ANoCEdAq9SGNcW0q3V9lChoBkdAgaRKdQO4G2gHTegDaAhHQKvgYaisXBR1fZQoaAZHQIb9Rswco6VoB03oA2gIR0Cr4J0cfeUIdX2UKGgGR0CO41tsN2C/aAdN6ANoCEdAq+F+o99tuXV9lChoBkdAlBgidBjWkWgHTegDaAhHQKviRtHhCMR1fZQoaAZHQJP/SipNsWRoB03oA2gIR0Cr7ltn5BTodX2UKGgGR0CRMXyX2M86aAdN6ANoCEdAq+6TP4VRDXV9lChoBkdAktsw+EAYHmgHTegDaAhHQKvvUgTRIBl1fZQoaAZHQJOi/RXwLE1oB03oA2gIR0Cr8CAz544ZdX2UKGgGR0CUW9VlPJq7aAdN6ANoCEdAq/vMhzNliHV9lChoBkdAliN2mLtNSWgHTegDaAhHQKv8JmNBF/h1fZQoaAZHQJRmTo9s7+1oB03oA2gIR0Cr/PMSkCV9dX2UKGgGR0CUjwEIgNgCaAdN6ANoCEdAq/2rzf779HV9lChoBkdAk8AUedTYNGgHTegDaAhHQKwJgi6g/Tt1fZQoaAZHQJS173qRlpZoB03oA2gIR0CsCbwMhHLBdX2UKGgGR0CWLzxLTQVsaAdN6ANoCEdArAqgMz/IbXV9lChoBkdAlrgdjbzshWgHTegDaAhHQKwLXbSqlxh1fZQoaAZHQJZm0ZiuuA9oB03oA2gIR0CsFyXYUWVNdX2UKGgGR0CWFK/kNnXeaAdN6ANoCEdArBdfSro4dnV9lChoBkdAlfJq3y7PIGgHTegDaAhHQKwYJsKLKmt1fZQoaAZHQJjFeXt0FKVoB03oA2gIR0CsGOp5NXYEdX2UKGgGR0CR+CIwudwvaAdN6ANoCEdArCTDIkqto3V9lChoBkdAk4DwDifg8GgHTegDaAhHQKwlCymhufp1fZQoaAZHQJMvd3HJcPhoB03oA2gIR0CsJfLwnYxtdX2UKGgGR0CVFFahHskZaAdN6ANoCEdArCasZ9/jKnV9lChoBkdAk9ffV7Qb/GgHTegDaAhHQKwyhAIppex1fZQoaAZHQJUQuYF7laNoB03oA2gIR0CsMr2PtD2KdX2UKGgGR0CVsB+vyLAIaAdN6ANoCEdArDOM/dIoVnV9lChoBkdAldJyuQp4KWgHTegDaAhHQKw0XOhTOxB1fZQoaAZHQJRrfmlqJuVoB03oA2gIR0CsQDjzZpSKdX2UKGgGR0CTHac7hegMaAdN6ANoCEdArEBxlz2ex3V9lChoBkdAlSetPtUn5WgHTegDaAhHQKxBOA+6iCd1fZQoaAZHQJTDfLeQ+2VoB03oA2gIR0CsQepnpSrHdX2UKGgGR0CVmAdYW+GoaAdN6ANoCEdArE2AVoHs1XV9lChoBkdAlcKPAO8TSWgHTegDaAhHQKxNwl9Brvd1fZQoaAZHQJJV/rLQokRoB03oA2gIR0CsTqZNO/L1dX2UKGgGR0CXPMKxLTQWaAdN6ANoCEdArE9UwrUb1nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8dfb88533a676472ce8946952546f1062f8777101f3b5a4f9c0ce4cce8e8bc4
|
3 |
+
size 1028358
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1447.2308742858702, "std_reward": 38.24596618571592, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-12T10:35:40.996172"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6a8fdd4c3635961ad212550d83ccf0ccad81d68d0176466ffa28931ac0b0702
|
3 |
+
size 2521
|