TomBrains commited on
Commit
b622e79
1 Parent(s): 9fb3665

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1447.23 +/- 38.25
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ce6096031d9a590efe60ce3baad0c6b115200d04659c033f5c3cbff13330d48
3
+ size 129065
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f3be5b280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f3be5b310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f3be5b3a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f3be5b430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4f3be5b4c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4f3be5b550>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f3be5b5e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4f3be5b670>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f3be5b700>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f3be5b790>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f3be5b820>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f4f3be539c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1670837316671408560,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI4iJr8GIEM/BIWVPuJPQj885dW+r3FwP+7d6b1ihJu+rlSIP4yx1b4+9Ci9TKEuPuq8XT9mk++/7CpUP0mTYL/POZM/VXuqv8j3kz5KdXu9GyunP01QyT8h64C/UjsiPKxSYj8G3uw+Llz2Pg9gt7/JOrC+nmOGPpg4ET+4yVY/g5kQQPK56D9xag4+4VSdv1qjzT72pD3ANU6Uv2uCVD/+QxM/mqepv0E9iT98Uj6/DZu6P5Qlq7/fpzU/PcYLvl2NEb+3xWfA52vKPoXgs7/FyJC/Bt7sPjECBcCWsTI/MwGMv3gJZz4DDhQ/NWJNP1TJh7+709c9aQHsPcr42TxaweQ+FPTfv33Nb79a8B/AEqnCv+ydXrwXXEQ+rBQ2P+JMnL4zhli+GRwzP7uv1jym0kW/oSGDvxDQDr8AIKE+xciQvwbe7D4uXPY+lrEyP/ogAL9oyL4+z+sGP0AFwz/1SoW9rLx0P2Fplj4h7Ae/wQ4xP6vcmT/ojZ2/q5mBvAYFgj1O9rw/wNbcPmaNoT8wKqA/COlYP8DzHT+/tKW+B4hSv/VKjz0rlIi+hYMTP8XIkL8G3uw+Llz2PpaxMj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACY/Ag2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2r/3PAAAAABPrgDAAAAAAOTiEjwAAAAAC2v5PwAAAACx+Us8AAAAAFZj2z8AAAAAcaHNvQAAAACrpty/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc9qaNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDAqMr0AAAAA8S/1vwAAAAClZFS9AAAAAKgg5j8AAAAA7ovKPQAAAADBBQBAAAAAAJldFz0AAAAAiBvjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHb+CTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDU3cC9AAAAAAU8+L8AAAAA6fRePQAAAAC48v4/AAAAAL1fNzwAAAAAesHjPwAAAAD7Y5g9AAAAAJod+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYD4e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjt+bPQAAAADJle6/AAAAAKSgn70AAAAAyQXmPwAAAAC1i4c9AAAAAPPp7T8AAAAA/EItvQAAAABTy+2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcDQtwrDqKMAWyUTegDjAF0lEdAqwV9srNGE3V9lChoBkdAlwBnE61b7mgHTegDaAhHQKsFuGKyfL91fZQoaAZHQJPkMmQbMotoB03oA2gIR0CrBoA3kxREdX2UKGgGR0CTd0vH93r2aAdN6ANoCEdAqwc7VWjoIXV9lChoBkdAlYwTQVsUI2gHTegDaAhHQKsS8IKMNtt1fZQoaAZHQJXLpVKf4AVoB03oA2gIR0CrEyoakyk9dX2UKGgGR0CVwC7l7tzCaAdN6ANoCEdAqxQT7qIJq3V9lChoBkdAlTEpAIIF/2gHTegDaAhHQKsUx9ORDCx1fZQoaAZHQJVzMqwyIpJoB03oA2gIR0CrIJVUuL75dX2UKGgGR0CJg+scQyylaAdN6ANoCEdAqyDPQ4S6D3V9lChoBkdAlG7s/MW43GgHTegDaAhHQKshnnNgSe11fZQoaAZHQJWoWIacZtNoB03oA2gIR0CrInSNfgJkdX2UKGgGR0CWOOEcKgIyaAdN6ANoCEdAqzBbv7WNFXV9lChoBkdAl40hL9MsYmgHTegDaAhHQKswwufVZs91fZQoaAZHQJYN+94/u9hoB03oA2gIR0CrMZOYx+KCdX2UKGgGR0CXGHT1CgK4aAdN6ANoCEdAqzJIWUKRdXV9lChoBkdAlZOpjQRf4WgHTegDaAhHQKs+FsY2sJZ1fZQoaAZHQJdibrB0p3JoB03oA2gIR0CrPk6QNkOJdX2UKGgGR0CSAwp6hQFcaAdN6ANoCEdAqz8d9a2Wp3V9lChoBkdAk909deIEbGgHTegDaAhHQKs/3bN8ma91fZQoaAZHQJXI+SJTER9oB03oA2gIR0CrS50iQkondX2UKGgGR0CXE75IpYs/aAdN6ANoCEdAq0vYekpI+XV9lChoBkdAl0EfcSGrS2gHTegDaAhHQKtMrXYDklx1fZQoaAZHQJdb3SDyvs9oB03oA2gIR0CrTWF1bJOndX2UKGgGR0CVPkHpKSPmaAdN6ANoCEdAq1krk6tDD3V9lChoBkdAl2j9pRGc4GgHTegDaAhHQKtZY88La251fZQoaAZHQJOoJjDsMRZoB03oA2gIR0CrWkX6AOJ+dX2UKGgGR0CW5c1fE4vOaAdN6ANoCEdAq1sEoa1kUnV9lChoBkdAlxTqAOJ+D2gHTegDaAhHQKtmwjKPn0V1fZQoaAZHQJYG887p3X9oB03oA2gIR0CrZv58Sf16dX2UKGgGR0CWeGmCiAUdaAdN6ANoCEdAq2fAKhL5AXV9lChoBkdAledOWa+ev2gHTegDaAhHQKtokKKpDNR1fZQoaAZHQJOvbJjlPrRoB03oA2gIR0CrdChWxQizdX2UKGgGR0CP63fShJyyaAdN6ANoCEdAq3RsPWhAW3V9lChoBkdAlAghkiD/VGgHTegDaAhHQKt1Pq59Vm11fZQoaAZHQJIdvKhcqvxoB03oA2gIR0CrdfC2UjcEdX2UKGgGR0CSGid3Sro4aAdN6ANoCEdAq4GolQdjonV9lChoBkdAkmP+4TbnHWgHTegDaAhHQKuB3/HYHxB1fZQoaAZHQJPyicTakARoB03oA2gIR0Crgqe7cwg1dX2UKGgGR0CSMKicG1QZaAdN6ANoCEdAq4N4PRRdhXV9lChoBkdAjitCyprDZWgHTegDaAhHQKuO+1R+BpZ1fZQoaAZHQJVp1U+9rXVoB03oA2gIR0Crj0Cg00m/dX2UKGgGR0CLb15CWu5jaAdN6ANoCEdAq5AbeVLSNXV9lChoBkdAlWXVj7Q9imgHTegDaAhHQKuQ0vt+kQB1fZQoaAZHQJLoV08vEjxoB03oA2gIR0CrnJFQdjoZdX2UKGgGR0CU0dDlYEGJaAdN6ANoCEdAq5zJmPHT7XV9lChoBkdAkwXX752yLWgHTegDaAhHQKudm8r7O3V1fZQoaAZHQJVHZNlAeJZoB03oA2gIR0CrnmjJlrdndX2UKGgGR0CTwVCr92ovaAdN6ANoCEdAq6oTCaZx73V9lChoBkdAlkiP8yeqaWgHTegDaAhHQKuqTXwLE1l1fZQoaAZHQJSG4xFiKBNoB03oA2gIR0CrqxqPOpsHdX2UKGgGR0CTk5sC1Z1WaAdN6ANoCEdAq6vXeWOZLXV9lChoBkdAkABhMSK3u2gHTegDaAhHQKu3qh9srNJ1fZQoaAZHQJJ+ptIkJKJoB03oA2gIR0Crt+UjkdWAdX2UKGgGR0CRzvbpeNT+aAdN6ANoCEdAq7jJEBsAN3V9lChoBkdAjW9FSbYsd2gHTegDaAhHQKu5fIBBAwB1fZQoaAZHQH/MgiNbTttoB03oA2gIR0CrxTO4oZyddX2UKGgGR0B/as4hllK9aAdN6ANoCEdAq8VtmUW2w3V9lChoBkdAkN6+tKZlWmgHTegDaAhHQKvGLICEHt51fZQoaAZHQJIKHwrlNlBoB03oA2gIR0Crxwh9kSVXdX2UKGgGR0CRPmGbCrLhaAdN6ANoCEdAq9KxDqnm73V9lChoBkdAijaqKxcE/2gHTegDaAhHQKvS9v6TGHZ1fZQoaAZHQI8zPuTibUhoB03oA2gIR0Cr09J1aGHpdX2UKGgGR0CLenTAFgUlaAdN6ANoCEdAq9SGNcW0q3V9lChoBkdAgaRKdQO4G2gHTegDaAhHQKvgYaisXBR1fZQoaAZHQIb9Rswco6VoB03oA2gIR0Cr4J0cfeUIdX2UKGgGR0CO41tsN2C/aAdN6ANoCEdAq+F+o99tuXV9lChoBkdAlBgidBjWkWgHTegDaAhHQKviRtHhCMR1fZQoaAZHQJP/SipNsWRoB03oA2gIR0Cr7ltn5BTodX2UKGgGR0CRMXyX2M86aAdN6ANoCEdAq+6TP4VRDXV9lChoBkdAktsw+EAYHmgHTegDaAhHQKvvUgTRIBl1fZQoaAZHQJOi/RXwLE1oB03oA2gIR0Cr8CAz544ZdX2UKGgGR0CUW9VlPJq7aAdN6ANoCEdAq/vMhzNliHV9lChoBkdAliN2mLtNSWgHTegDaAhHQKv8JmNBF/h1fZQoaAZHQJRmTo9s7+1oB03oA2gIR0Cr/PMSkCV9dX2UKGgGR0CUjwEIgNgCaAdN6ANoCEdAq/2rzf779HV9lChoBkdAk8AUedTYNGgHTegDaAhHQKwJgi6g/Tt1fZQoaAZHQJS173qRlpZoB03oA2gIR0CsCbwMhHLBdX2UKGgGR0CWLzxLTQVsaAdN6ANoCEdArAqgMz/IbXV9lChoBkdAlrgdjbzshWgHTegDaAhHQKwLXbSqlxh1fZQoaAZHQJZm0ZiuuA9oB03oA2gIR0CsFyXYUWVNdX2UKGgGR0CWFK/kNnXeaAdN6ANoCEdArBdfSro4dnV9lChoBkdAlfJq3y7PIGgHTegDaAhHQKwYJsKLKmt1fZQoaAZHQJjFeXt0FKVoB03oA2gIR0CsGOp5NXYEdX2UKGgGR0CR+CIwudwvaAdN6ANoCEdArCTDIkqto3V9lChoBkdAk4DwDifg8GgHTegDaAhHQKwlCymhufp1fZQoaAZHQJMvd3HJcPhoB03oA2gIR0CsJfLwnYxtdX2UKGgGR0CVFFahHskZaAdN6ANoCEdArCasZ9/jKnV9lChoBkdAk9ffV7Qb/GgHTegDaAhHQKwyhAIppex1fZQoaAZHQJUQuYF7laNoB03oA2gIR0CsMr2PtD2KdX2UKGgGR0CVsB+vyLAIaAdN6ANoCEdArDOM/dIoVnV9lChoBkdAldJyuQp4KWgHTegDaAhHQKw0XOhTOxB1fZQoaAZHQJRrfmlqJuVoB03oA2gIR0CsQDjzZpSKdX2UKGgGR0CTHac7hegMaAdN6ANoCEdArEBxlz2ex3V9lChoBkdAlSetPtUn5WgHTegDaAhHQKxBOA+6iCd1fZQoaAZHQJTDfLeQ+2VoB03oA2gIR0CsQepnpSrHdX2UKGgGR0CVmAdYW+GoaAdN6ANoCEdArE2AVoHs1XV9lChoBkdAlcKPAO8TSWgHTegDaAhHQKxNwl9Brvd1fZQoaAZHQJJV/rLQokRoB03oA2gIR0CsTqZNO/L1dX2UKGgGR0CXPMKxLTQWaAdN6ANoCEdArE9UwrUb1nVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ba9a182333399f7a6df22c9e2ad32f672b226527823b10e82fc434176e503c3
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a302e59b8a383bc11ffda9ba8655b21afa2fd50e38254c045b3fb8bc8269869
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f3be5b280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f3be5b310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f3be5b3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f3be5b430>", "_build": "<function ActorCriticPolicy._build at 0x7f4f3be5b4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4f3be5b550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f3be5b5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4f3be5b670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f3be5b700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f3be5b790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f3be5b820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4f3be539c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670837316671408560, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI4iJr8GIEM/BIWVPuJPQj885dW+r3FwP+7d6b1ihJu+rlSIP4yx1b4+9Ci9TKEuPuq8XT9mk++/7CpUP0mTYL/POZM/VXuqv8j3kz5KdXu9GyunP01QyT8h64C/UjsiPKxSYj8G3uw+Llz2Pg9gt7/JOrC+nmOGPpg4ET+4yVY/g5kQQPK56D9xag4+4VSdv1qjzT72pD3ANU6Uv2uCVD/+QxM/mqepv0E9iT98Uj6/DZu6P5Qlq7/fpzU/PcYLvl2NEb+3xWfA52vKPoXgs7/FyJC/Bt7sPjECBcCWsTI/MwGMv3gJZz4DDhQ/NWJNP1TJh7+709c9aQHsPcr42TxaweQ+FPTfv33Nb79a8B/AEqnCv+ydXrwXXEQ+rBQ2P+JMnL4zhli+GRwzP7uv1jym0kW/oSGDvxDQDr8AIKE+xciQvwbe7D4uXPY+lrEyP/ogAL9oyL4+z+sGP0AFwz/1SoW9rLx0P2Fplj4h7Ae/wQ4xP6vcmT/ojZ2/q5mBvAYFgj1O9rw/wNbcPmaNoT8wKqA/COlYP8DzHT+/tKW+B4hSv/VKjz0rlIi+hYMTP8XIkL8G3uw+Llz2PpaxMj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACY/Ag2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2r/3PAAAAABPrgDAAAAAAOTiEjwAAAAAC2v5PwAAAACx+Us8AAAAAFZj2z8AAAAAcaHNvQAAAACrpty/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAc9qaNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDAqMr0AAAAA8S/1vwAAAAClZFS9AAAAAKgg5j8AAAAA7ovKPQAAAADBBQBAAAAAAJldFz0AAAAAiBvjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHb+CTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDU3cC9AAAAAAU8+L8AAAAA6fRePQAAAAC48v4/AAAAAL1fNzwAAAAAesHjPwAAAAD7Y5g9AAAAAJod+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYD4e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjt+bPQAAAADJle6/AAAAAKSgn70AAAAAyQXmPwAAAAC1i4c9AAAAAPPp7T8AAAAA/EItvQAAAABTy+2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcDQtwrDqKMAWyUTegDjAF0lEdAqwV9srNGE3V9lChoBkdAlwBnE61b7mgHTegDaAhHQKsFuGKyfL91fZQoaAZHQJPkMmQbMotoB03oA2gIR0CrBoA3kxREdX2UKGgGR0CTd0vH93r2aAdN6ANoCEdAqwc7VWjoIXV9lChoBkdAlYwTQVsUI2gHTegDaAhHQKsS8IKMNtt1fZQoaAZHQJXLpVKf4AVoB03oA2gIR0CrEyoakyk9dX2UKGgGR0CVwC7l7tzCaAdN6ANoCEdAqxQT7qIJq3V9lChoBkdAlTEpAIIF/2gHTegDaAhHQKsUx9ORDCx1fZQoaAZHQJVzMqwyIpJoB03oA2gIR0CrIJVUuL75dX2UKGgGR0CJg+scQyylaAdN6ANoCEdAqyDPQ4S6D3V9lChoBkdAlG7s/MW43GgHTegDaAhHQKshnnNgSe11fZQoaAZHQJWoWIacZtNoB03oA2gIR0CrInSNfgJkdX2UKGgGR0CWOOEcKgIyaAdN6ANoCEdAqzBbv7WNFXV9lChoBkdAl40hL9MsYmgHTegDaAhHQKswwufVZs91fZQoaAZHQJYN+94/u9hoB03oA2gIR0CrMZOYx+KCdX2UKGgGR0CXGHT1CgK4aAdN6ANoCEdAqzJIWUKRdXV9lChoBkdAlZOpjQRf4WgHTegDaAhHQKs+FsY2sJZ1fZQoaAZHQJdibrB0p3JoB03oA2gIR0CrPk6QNkOJdX2UKGgGR0CSAwp6hQFcaAdN6ANoCEdAqz8d9a2Wp3V9lChoBkdAk909deIEbGgHTegDaAhHQKs/3bN8ma91fZQoaAZHQJXI+SJTER9oB03oA2gIR0CrS50iQkondX2UKGgGR0CXE75IpYs/aAdN6ANoCEdAq0vYekpI+XV9lChoBkdAl0EfcSGrS2gHTegDaAhHQKtMrXYDklx1fZQoaAZHQJdb3SDyvs9oB03oA2gIR0CrTWF1bJOndX2UKGgGR0CVPkHpKSPmaAdN6ANoCEdAq1krk6tDD3V9lChoBkdAl2j9pRGc4GgHTegDaAhHQKtZY88La251fZQoaAZHQJOoJjDsMRZoB03oA2gIR0CrWkX6AOJ+dX2UKGgGR0CW5c1fE4vOaAdN6ANoCEdAq1sEoa1kUnV9lChoBkdAlxTqAOJ+D2gHTegDaAhHQKtmwjKPn0V1fZQoaAZHQJYG887p3X9oB03oA2gIR0CrZv58Sf16dX2UKGgGR0CWeGmCiAUdaAdN6ANoCEdAq2fAKhL5AXV9lChoBkdAledOWa+ev2gHTegDaAhHQKtokKKpDNR1fZQoaAZHQJOvbJjlPrRoB03oA2gIR0CrdChWxQizdX2UKGgGR0CP63fShJyyaAdN6ANoCEdAq3RsPWhAW3V9lChoBkdAlAghkiD/VGgHTegDaAhHQKt1Pq59Vm11fZQoaAZHQJIdvKhcqvxoB03oA2gIR0CrdfC2UjcEdX2UKGgGR0CSGid3Sro4aAdN6ANoCEdAq4GolQdjonV9lChoBkdAkmP+4TbnHWgHTegDaAhHQKuB3/HYHxB1fZQoaAZHQJPyicTakARoB03oA2gIR0Crgqe7cwg1dX2UKGgGR0CSMKicG1QZaAdN6ANoCEdAq4N4PRRdhXV9lChoBkdAjitCyprDZWgHTegDaAhHQKuO+1R+BpZ1fZQoaAZHQJVp1U+9rXVoB03oA2gIR0Crj0Cg00m/dX2UKGgGR0CLb15CWu5jaAdN6ANoCEdAq5AbeVLSNXV9lChoBkdAlWXVj7Q9imgHTegDaAhHQKuQ0vt+kQB1fZQoaAZHQJLoV08vEjxoB03oA2gIR0CrnJFQdjoZdX2UKGgGR0CU0dDlYEGJaAdN6ANoCEdAq5zJmPHT7XV9lChoBkdAkwXX752yLWgHTegDaAhHQKudm8r7O3V1fZQoaAZHQJVHZNlAeJZoB03oA2gIR0CrnmjJlrdndX2UKGgGR0CTwVCr92ovaAdN6ANoCEdAq6oTCaZx73V9lChoBkdAlkiP8yeqaWgHTegDaAhHQKuqTXwLE1l1fZQoaAZHQJSG4xFiKBNoB03oA2gIR0CrqxqPOpsHdX2UKGgGR0CTk5sC1Z1WaAdN6ANoCEdAq6vXeWOZLXV9lChoBkdAkABhMSK3u2gHTegDaAhHQKu3qh9srNJ1fZQoaAZHQJJ+ptIkJKJoB03oA2gIR0Crt+UjkdWAdX2UKGgGR0CRzvbpeNT+aAdN6ANoCEdAq7jJEBsAN3V9lChoBkdAjW9FSbYsd2gHTegDaAhHQKu5fIBBAwB1fZQoaAZHQH/MgiNbTttoB03oA2gIR0CrxTO4oZyddX2UKGgGR0B/as4hllK9aAdN6ANoCEdAq8VtmUW2w3V9lChoBkdAkN6+tKZlWmgHTegDaAhHQKvGLICEHt51fZQoaAZHQJIKHwrlNlBoB03oA2gIR0Crxwh9kSVXdX2UKGgGR0CRPmGbCrLhaAdN6ANoCEdAq9KxDqnm73V9lChoBkdAijaqKxcE/2gHTegDaAhHQKvS9v6TGHZ1fZQoaAZHQI8zPuTibUhoB03oA2gIR0Cr09J1aGHpdX2UKGgGR0CLenTAFgUlaAdN6ANoCEdAq9SGNcW0q3V9lChoBkdAgaRKdQO4G2gHTegDaAhHQKvgYaisXBR1fZQoaAZHQIb9Rswco6VoB03oA2gIR0Cr4J0cfeUIdX2UKGgGR0CO41tsN2C/aAdN6ANoCEdAq+F+o99tuXV9lChoBkdAlBgidBjWkWgHTegDaAhHQKviRtHhCMR1fZQoaAZHQJP/SipNsWRoB03oA2gIR0Cr7ltn5BTodX2UKGgGR0CRMXyX2M86aAdN6ANoCEdAq+6TP4VRDXV9lChoBkdAktsw+EAYHmgHTegDaAhHQKvvUgTRIBl1fZQoaAZHQJOi/RXwLE1oB03oA2gIR0Cr8CAz544ZdX2UKGgGR0CUW9VlPJq7aAdN6ANoCEdAq/vMhzNliHV9lChoBkdAliN2mLtNSWgHTegDaAhHQKv8JmNBF/h1fZQoaAZHQJRmTo9s7+1oB03oA2gIR0Cr/PMSkCV9dX2UKGgGR0CUjwEIgNgCaAdN6ANoCEdAq/2rzf779HV9lChoBkdAk8AUedTYNGgHTegDaAhHQKwJgi6g/Tt1fZQoaAZHQJS173qRlpZoB03oA2gIR0CsCbwMhHLBdX2UKGgGR0CWLzxLTQVsaAdN6ANoCEdArAqgMz/IbXV9lChoBkdAlrgdjbzshWgHTegDaAhHQKwLXbSqlxh1fZQoaAZHQJZm0ZiuuA9oB03oA2gIR0CsFyXYUWVNdX2UKGgGR0CWFK/kNnXeaAdN6ANoCEdArBdfSro4dnV9lChoBkdAlfJq3y7PIGgHTegDaAhHQKwYJsKLKmt1fZQoaAZHQJjFeXt0FKVoB03oA2gIR0CsGOp5NXYEdX2UKGgGR0CR+CIwudwvaAdN6ANoCEdArCTDIkqto3V9lChoBkdAk4DwDifg8GgHTegDaAhHQKwlCymhufp1fZQoaAZHQJMvd3HJcPhoB03oA2gIR0CsJfLwnYxtdX2UKGgGR0CVFFahHskZaAdN6ANoCEdArCasZ9/jKnV9lChoBkdAk9ffV7Qb/GgHTegDaAhHQKwyhAIppex1fZQoaAZHQJUQuYF7laNoB03oA2gIR0CsMr2PtD2KdX2UKGgGR0CVsB+vyLAIaAdN6ANoCEdArDOM/dIoVnV9lChoBkdAldJyuQp4KWgHTegDaAhHQKw0XOhTOxB1fZQoaAZHQJRrfmlqJuVoB03oA2gIR0CsQDjzZpSKdX2UKGgGR0CTHac7hegMaAdN6ANoCEdArEBxlz2ex3V9lChoBkdAlSetPtUn5WgHTegDaAhHQKxBOA+6iCd1fZQoaAZHQJTDfLeQ+2VoB03oA2gIR0CsQepnpSrHdX2UKGgGR0CVmAdYW+GoaAdN6ANoCEdArE2AVoHs1XV9lChoBkdAlcKPAO8TSWgHTegDaAhHQKxNwl9Brvd1fZQoaAZHQJJV/rLQokRoB03oA2gIR0CsTqZNO/L1dX2UKGgGR0CXPMKxLTQWaAdN6ANoCEdArE9UwrUb1nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8dfb88533a676472ce8946952546f1062f8777101f3b5a4f9c0ce4cce8e8bc4
3
+ size 1028358
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1447.2308742858702, "std_reward": 38.24596618571592, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-12T10:35:40.996172"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6a8fdd4c3635961ad212550d83ccf0ccad81d68d0176466ffa28931ac0b0702
3
+ size 2521