a2c-AntBulletEnv-v0 / config.json
TokyoNights's picture
Initial commit
b919edc
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efea5415cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efea5415d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efea5415e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efea5415ea0>", "_build": "<function ActorCriticPolicy._build at 0x7efea5415f30>", "forward": "<function ActorCriticPolicy.forward at 0x7efea5415fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efea5416050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efea54160e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7efea5416170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efea5416200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efea5416290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efea5416320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efea5418240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685549864414006768, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEfgMz8dthc/hHH5Pi2egz/X4UQ/VJg4PbrOlD6ho4w97icgP50yGr+gKYY/hp7mPmw50r80gX3As8qGvvYSH7/M1KE+0TTJvx3Fr74NPEE/ReDCPqQvmL+4Ut2+2DgWwNcSaT9Y3QzAt1ATPwAai78BgBE/WPRZPkOOEz+tx/0/W4H7PmLUkj9NEuU+9ZdTv8RkNz9/yI29+NntvDlSS7+ERL0+4cpLP8T0nz3XEMI/SztRP+jahD8tV0M+/li5v/KUO77rYri/0I1nP/dxTD89l4y/2J7oPrdQEz+ikWs/YxcpP4Zii7/rhLS98QNmPwPKgL8ODhs9BP3Bvm2lob9O2Tg/ToY1vB30Gj9dt8m+R5Gjv9SE7z5RIZ+9ycsdPwsjFL/gcQ6+ra70PtXvzDtZwI++qRLPvhHTOr//u0U/PZeMv9ie6D63UBM/ABqLvwfUdb9MELy/FGIpv/AfxL9cJgW+mt4Gvkh5gL6JSAW8sM45P5Fjw7xjUcu+L/LIvcmSEL5qOXg/kMM+P0jQID9PA68+htQNP8SUuj4jV4g9SuZkv7lw2j1Vp0G+XaGPPdcSaT/Ynug+t1ATP6KRaz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADo+6Q2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmWwUvAAAAADFDfW/AAAAAJgQAT4AAAAASm3hPwAAAACglFm9AAAAAJEM2j8AAAAAb2QHvgAAAACDPee/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvm55tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLY73j0AAAAALdLvvwAAAACdSjQ9AAAAAC283z8AAAAAX0RVvQAAAADESP4/AAAAAOu+nL0AAAAA0d3+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE18zMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB9ITq9AAAAAEAq4L8AAAAATYgsPQAAAACxduE/AAAAAPxwrL0AAAAAZ4HlPwAAAAA2c/S6AAAAABmk478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4omi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD+PDPQAAAABvcuK/AAAAACcfG70AAAAAXJjhPwAAAABMiAE+AAAAABNtAEAAAAAAHu/ePAAAAACVIfW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ52Tf+CK7+MAWyUTegDjAF0lEdAsTmNtpEhJXV9lChoBkdAoKCVqpLmIWgHTegDaAhHQLE8A1zhgmZ1fZQoaAZHQIayAU5+6RRoB03oA2gIR0CxPFqYqoZRdX2UKGgGR0CfVz0ihWYGaAdN6ANoCEdAsT8Kr+5vtXV9lChoBkdAoEbh82JizGgHTegDaAhHQLFAzbobGWF1fZQoaAZHQJ/UouxrzoVoB03oA2gIR0CxRK6gmJFcdX2UKGgGR0CgAWv3SKFaaAdN6ANoCEdAsUVAgjhUBHV9lChoBkdAnI/9wzch1WgHTegDaAhHQLFIiKNhmXh1fZQoaAZHQKAzHoNd7fJoB03oA2gIR0CxSiZlWfbsdX2UKGgGR0CXZ/yLQ5WBaAdNVwNoCEdAsUvrJ+2E03V9lChoBkdAnHwTkIX0oWgHTegDaAhHQLFMnLK3d9F1fZQoaAZHQJ9jrlnyup1oB03oA2gIR0CxT7TMaCL/dX2UKGgGR0CYKTg62fCiaAdN6ANoCEdAsVGvktEofHV9lChoBkdAginDCP6sQ2gHTegDaAhHQLFUgzmwJPZ1fZQoaAZHQJZEYGzKLbZoB03oA2gIR0CxVacbm2b5dX2UKGgGR0Cbt8Hi3ocJaAdN6ANoCEdAsVlZpztCzHV9lChoBkdAnKac63iJf2gHTegDaAhHQLFa+TSb6P91fZQoaAZHQJz9cjiXIENoB03oA2gIR0CxXMebNKRMdX2UKGgGR0CgOpkDZDiPaAdN6ANoCEdAsV14MKCxvHV9lChoBkdAmqCUcCHRC2gHTegDaAhHQLFgnlsguAZ1fZQoaAZHQJv3Rmukk8loB03oA2gIR0CxYtTD0lJIdX2UKGgGR0Cb3rJdSl3yaAdN6ANoCEdAsWWbjWCmM3V9lChoBkdAlwbIvexfOWgHTegDaAhHQLFmuPUaybB1fZQoaAZHQJwy9P0qYqpoB03oA2gIR0Cxaki0rsjWdX2UKGgGR0CcB5QqI7/5aAdN6ANoCEdAsWvtDPWxyHV9lChoBkdAm5/e4smOVGgHTegDaAhHQLFtugn+hoN1fZQoaAZHQJneEmrsByVoB03oA2gIR0Cxbm4ODrZ8dX2UKGgGR0CeBUpEhJRPaAdN6ANoCEdAsXGbQkX1rnV9lChoBkdAngFdu5z5oGgHTegDaAhHQLFz7pnHvMN1fZQoaAZHQJwXSsIVuaZoB03oA2gIR0CxdscGPgejdX2UKGgGR0CdT+YUnG83aAdN6ANoCEdAsXfjugHu7nV9lChoBkdAkNC/9xZMc2gHTegDaAhHQLF7MdHDrJN1fZQoaAZHQJsorNr0rbxoB03oA2gIR0CxfN4e1a4ddX2UKGgGR0Ca1TxmCiAUaAdN6ANoCEdAsX692IO6NHV9lChoBkdAlXxA2hqTKWgHTegDaAhHQLF/dGH58Bx1fZQoaAZHQJvKc9fTkQxoB03oA2gIR0CxgpuloDgZdX2UKGgGR0CZQ+wLmZE2aAdN6ANoCEdAsYT1yJbdJ3V9lChoBkdAnTXTX8O09mgHTegDaAhHQLGHvrGBFux1fZQoaAZHQJUDbRLK3d9oB03oA2gIR0CxiMUEC/47dX2UKGgGR0CdG+WMju8caAdN6ANoCEdAsYvuBDohZHV9lChoBkdAirrJ7TlT32gHTegDaAhHQLGNkojfNzN1fZQoaAZHQJsPAma6ST1oB03oA2gIR0Cxj1/HtF8YdX2UKGgGR0CdFpMTewcHaAdN6ANoCEdAsZAV0Syt3nV9lChoBkdAnbLQR5C4SmgHTegDaAhHQLGTdt9hJAd1fZQoaAZHQJ6vJLf1pTNoB03oA2gIR0CxleqjFhoedX2UKGgGR0CdheTDO1OTaAdN6ANoCEdAsZjSknCwbHV9lChoBkdAnWXyc0+C9WgHTegDaAhHQLGZs8OkLx91fZQoaAZHQJsZcx0uDjBoB03oA2gIR0CxnNIexOcldX2UKGgGR0CYnKis4ku6aAdN6ANoCEdAsZ54TwlSj3V9lChoBkdAnmI37Lt/nWgHTegDaAhHQLGgV75VOsV1fZQoaAZHQJ9XJsGgSOBoB03oA2gIR0CxoQX31zySdX2UKGgGR0CV+wuzyBkJaAdN6ANoCEdAsaSZZ4fOlnV9lChoBkdAlpwTJIUah2gHTegDaAhHQLGnIN0NjLB1fZQoaAZHQJ8jXskY4yZoB03oA2gIR0CxqfWvnr6ddX2UKGgGR0CVwnfdhy80aAdN6ANoCEdAsaqoxKxs23V9lChoBkdAmYMiaJAMUmgHTegDaAhHQLGtyZL7Ged1fZQoaAZHQJ3x4wTM7ltoB03oA2gIR0Cxr22mce8xdX2UKGgGR0CWfKggow23aAdN6ANoCEdAsbE2RYA80XV9lChoBkdAnF+AtapxWGgHTegDaAhHQLGx5CBf8dh1fZQoaAZHQJbgSeoUBXFoB03oA2gIR0CxtZCPU8V6dX2UKGgGR0CgBsEfs/puaAdN6ANoCEdAsbgX2ugYg3V9lChoBkdAnASc/IKc/mgHTegDaAhHQLG6tGH58Bx1fZQoaAZHQJcJoI1LrX1oB03oA2gIR0Cxu24O+ZgHdX2UKGgGR0Cbf/FcY64laAdN6ANoCEdAsb6PlPrOaHV9lChoBkdAnLi1lwtJ4GgHTegDaAhHQLHANRTS9dx1fZQoaAZHQJTM1BeHBUJoB03oA2gIR0Cxwgbg4wRHdX2UKGgGR0CdlvZx7zClaAdN6ANoCEdAscK4oH9m6HV9lChoBkdAkbI1KK5082gHTegDaAhHQLHGkQ7cO9Z1fZQoaAZHQJ/eayeI2wVoB03oA2gIR0CxySMUM5OrdX2UKGgGR0CbPHSBshxHaAdN6ANoCEdAscuR9ph4MXV9lChoBkdAnndjcAR02mgHTegDaAhHQLHMS+QU5+91fZQoaAZHQJ7ravdM0xdoB03oA2gIR0Cxz39fsu3+dX2UKGgGR0CXV5DjzZpSaAdN6ANoCEdAsdEwKzAvc3V9lChoBkdAmMY31rZam2gHTegDaAhHQLHS/66reZZ1fZQoaAZHQJWdOFev6j5oB03oA2gIR0Cx07a+ajN7dX2UKGgGR0CY+vXKbKA8aAdN6ANoCEdAsdfGkUKzA3V9lChoBkdAm0phY7q6fGgHTegDaAhHQLHaUxcmjTN1fZQoaAZHQJegV/iHZbpoB03oA2gIR0Cx3IjaXa8IdX2UKGgGR0CXWfha1TisaAdN6ANoCEdAsd0/JRwZO3V9lChoBkdAlfuSH/Lkj2gHTegDaAhHQLHgev6TGHZ1fZQoaAZHQJsI52/zreJoB03oA2gIR0Cx4iY8EFGHdX2UKGgGR0CdLLPoFFDwaAdN6ANoCEdAseQKFL39JnV9lChoBkdAnCzVlXiiqWgHTegDaAhHQLHkvrPMSsd1fZQoaAZHQIHIlKujh1loB03oA2gIR0Cx6R/+0gKXdX2UKGgGR0CeAdBrN4Z/aAdN6ANoCEdAsevBiDujRHV9lChoBkdAk1pxY/3WWmgHTegDaAhHQLHtp6unuRd1fZQoaAZHQJn+qZ3LV4JoB03oA2gIR0Cx7l16Rhc8dX2UKGgGR0CaBW3N9ph4aAdN6ANoCEdAsfGH1CgK4XV9lChoBkdAlGUmX5WRzWgHTegDaAhHQLHzKfVI7Nl1fZQoaAZHQJgor1h9b5doB03oA2gIR0Cx9P5DmbLEdX2UKGgGR0CXORc4o7V8aAdN6ANoCEdAsfWwoZydWnV9lChoBkdAn2vEsasIV2gHTegDaAhHQLH6UUtqYZ51fZQoaAZHQJt0Yp3HJcRoB03oA2gIR0Cx/LUH6dlNdX2UKGgGR0CaFqVawD/3aAdN6ANoCEdAsf6GxC6YmnV9lChoBkdAnjKCF0xM4GgHTegDaAhHQLH/Oneizs11fZQoaAZHQJ61ETL4etFoB03oA2gIR0CyAkvT1CgLdX2UKGgGR0CctaVbA1vVaAdN6ANoCEdAsgPt6cAimnV9lChoBkdAnXBo2wV0tGgHTegDaAhHQLIFtFjd56d1fZQoaAZHQJ6tdg3Lmp5oB03oA2gIR0CyBmc14xDcdX2UKGgGR0CbdheumrKeaAdN6ANoCEdAsgthvo/zKHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}