ppo-LunarLander-v2-1 / config.json
TmDee's picture
Test1
ffc7b74 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d961ce9ba30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d961ce9bac0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d961ce9bb50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d961ce9bbe0>", "_build": "<function ActorCriticPolicy._build at 0x7d961ce9bc70>", "forward": "<function ActorCriticPolicy.forward at 0x7d961ce9bd00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d961ce9bd90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d961ce9be20>", "_predict": "<function ActorCriticPolicy._predict at 0x7d961ce9beb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d961ce9bf40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d961ceac040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d961ceac0d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d961cea8600>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718814402554584518, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADRFEr/92yA+Nd0JvmAkXb/bpga+hw7HvQAAAAAAAAAApnOBPrsrlj8g3g4/kBwPv/0HMD5fpTc+AAAAAAAAAADmhSo95AVqPqij2L3al4G/MpWAPttR5z0AAAAAAAAAADoVbT4F+H0//9nDPvsvEb+PtpI+bfFSPgAAAAAAAAAAMwzPvTvkfj+SnqG+LGEkvy32xDytdem9AAAAAAAAAABakeW9xpabP53yML8VjCS/6k16PXa8o7wAAAAAAAAAABCBZ74db6s/4wyOvlFU2L4FNvw7HqeVPQAAAAAAAAAArBYGvyZisj/P0xK/N8TLvgiPU77A8ee8AAAAAAAAAABm7Cy8txyNP6FuCb2DFCG/SRQEPSWK/r0AAAAAAAAAAE3X+T5FA+u9Gz7rPqA9qr6cIso/ZJWpPwAAAAAAAAAAg6bTPopMNDzlKdU+uk5/v/D7Gz5DWnm9AAAAAAAAAABa92w+z7aKP15lBz+CARy/0M1nPtrMGT4AAAAAAAAAAKCFfz5gEU0/bdmCPmwKSr8pf+k+yLZOPgAAAAAAAAAArRedvqD92D4GrRg+BVqNv+a7nL4khZQ+AAAAAAAAAAAaoEU9kqKkPJQgBr/rBme/fw7ZPuMk270AAAAAAAAAACrjqb4gIaI+tVQCv/HIWL/VWeo9ea0RvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkosQNCqp+MAWyUS1GMAXSUR0CB4Ow9JSR9dX2UKGgGR8BcmJA+pwS8aAdLeWgIR0CB4QoLofSydX2UKGgGR8AwsU9pyp71aAdLUmgIR0CB4Syt3fQ8dX2UKGgGR8A+lQ5myxA0aAdLf2gIR0CB4TLs8gZCdX2UKGgGR8BKx05EMLF5aAdLjWgIR0CB4euRLbpNdX2UKGgGR8Bjw11MdtEYaAdLX2gIR0CB4kpqh11XdX2UKGgGR8BdPPoq0+khaAdLh2gIR0CB4lBxgiNbdX2UKGgGR8BW6I95hSccaAdLiWgIR0CB4sqbz9S/dX2UKGgGR8BXX0+s5n14aAdLUmgIR0CB4t9S/CZXdX2UKGgGR8BPs+dK/VRUaAdLk2gIR0CB4wqlxffGdX2UKGgGR8BVEYduHerNaAdLfWgIR0CB40jtXxOMdX2UKGgGR8BX2ZFw1ivxaAdLnGgIR0CB4011nuiOdX2UKGgGR8BdXlb3XZoPaAdLeWgIR0CB43x6v7m/dX2UKGgGR8BQpx0+1SflaAdLV2gIR0CB47UipvP1dX2UKGgGR8A5H8/lhgE2aAdLWWgIR0CB47+Zw4sFdX2UKGgGR8BJLT2exwAEaAdLZGgIR0CB5DXko4MndX2UKGgGR8BKnIfKZDzAaAdLaGgIR0CB5J1cMVk+dX2UKGgGR8BROJC4SYgJaAdLjGgIR0CB5J85S3spdX2UKGgGR8BHOS2hIvrXaAdLaWgIR0CB5K5EMLF5dX2UKGgGR8BSGFrdnCfpaAdLXGgIR0CB5Puk1uR+dX2UKGgGR8Ba++4XoC+2aAdLX2gIR0CB5Wdmxt52dX2UKGgGR8BHjg6uGKyfaAdLh2gIR0CB5Xu+AVfvdX2UKGgGR8BVLTd1uBMBaAdLVWgIR0CB5cqLjxTbdX2UKGgGR8BVcekUKzAvaAdLWWgIR0CB5cOmzjWDdX2UKGgGR8BPkZWBBiTdaAdLb2gIR0CB5e5WilBQdX2UKGgGR8BRyWnCO3lTaAdLcmgIR0CB5nm4AjptdX2UKGgGR8BQ2iK3uuzQaAdLY2gIR0CB5nnscABDdX2UKGgGR8BON6pYLb5/aAdLQ2gIR0CB5sZ9/jKgdX2UKGgGR8Bfq7aufVZtaAdLeWgIR0CB52butwJgdX2UKGgGR8BR8g6p5u63aAdLVmgIR0CB53Sn+AEudX2UKGgGR8BPx/hl18suaAdLdGgIR0CB53rfLs8gdX2UKGgGR8BMR7aAWi1zaAdLgGgIR0CB5+uieumrdX2UKGgGR8BK0H889wFUaAdLkWgIR0CB6AbnX/YKdX2UKGgGR8AfKDf3vhIfaAdLamgIR0CB6IQoTfzjdX2UKGgGR8BSSkFwDNhWaAdLg2gIR0CB6Jky1uzhdX2UKGgGR8BRtzJU5uIiaAdLYmgIR0CB6SVjZteldX2UKGgGR8BNRxDTjNpuaAdLX2gIR0CB6TQswtaqdX2UKGgGR8BL7S1E3KjjaAdLbWgIR0CB6YQtjCpFdX2UKGgGR8BIXLSNOuaGaAdLemgIR0CB6ZTOPeYVdX2UKGgGR8AlQtnPE87qaAdLlWgIR0CB6al1KXfJdX2UKGgGR8BFrH9ehPCVaAdLf2gIR0CB6dEw35vcdX2UKGgGR8BbBY1k1/DtaAdLbWgIR0CB6j3os7MgdX2UKGgGR8BZot9hJAdGaAdLUmgIR0CB6lC+lCTmdX2UKGgGR8BFvKJEYwZgaAdLVWgIR0CB6mw/PgNxdX2UKGgGR8BT3cl9jPOZaAdLXWgIR0CB6p2HtWuHdX2UKGgGR8BQXgXl8w6AaAdLWGgIR0CB6vDQ7cO9dX2UKGgGR8BQ8tv4ubqhaAdLkGgIR0CB61lOGj9GdX2UKGgGR8BJiGO+7Dl6aAdLR2gIR0CB7BgSeyzHdX2UKGgGR8BDTe3x4IKMaAdLpmgIR0CB7GFaB7NTdX2UKGgGR8BRu/9LpRoAaAdLQGgIR0CB7GnTAnD0dX2UKGgGR8BS17mU4aP0aAdLZ2gIR0CB7I5Xlr/LdX2UKGgGR8BJ1f6XSjQBaAdLe2gIR0CB7KNLlFMJdX2UKGgGR8BKjEbYK6WgaAdLR2gIR0CB7PnGsFMadX2UKGgGR8A/815Sm65HaAdLlGgIR0CB7RBX0XgtdX2UKGgGR8BRf2alUIcBaAdLd2gIR0CB7YHrQgLadX2UKGgGR8BSr5WBBiTdaAdLXWgIR0CB7YsJY1YRdX2UKGgGR8BJWsAeaKDTaAdLimgIR0CB7dBOYYzjdX2UKGgGR8A9QiCaqjrSaAdLgGgIR0CB7emHgxagdX2UKGgGR8BVzPUrkKeDaAdLdGgIR0CB7iCjDbaidX2UKGgGR8BLpGmUGFBZaAdLVmgIR0CB7ktDlYEGdX2UKGgGR8AkhPiT+vQoaAdLkmgIR0CB7l+lTFVDdX2UKGgGRz/zQzch1TzeaAdLsGgIR0CB7oQ04zacdX2UKGgGR8BaV2ZNO/L1aAdLVWgIR0CB7z5v99+gdX2UKGgGR8BVnejZcs19aAdLaGgIR0CB8AWi1y/9dX2UKGgGR0AVpOerdWQwaAdLamgIR0CB8CuoP07KdX2UKGgGR8BNYRqfvnbJaAdLUWgIR0CB8DmMfigkdX2UKGgGR8A867TUiILxaAdLSWgIR0CB8FRlYlpodX2UKGgGR8AuBKNAC4jKaAdLoWgIR0CB8F1B+nZTdX2UKGgGR8BbhuF+NLlFaAdLV2gIR0CB8HI0ZWJadX2UKGgGR8BTtEMLF4s3aAdLf2gIR0CB8LwMH8jzdX2UKGgGR8BSLSRr8BMjaAdLR2gIR0CB8PTy8SPEdX2UKGgGR8Ba/4sRQJokaAdLk2gIR0CB8SPZIxxldX2UKGgGR8BTHb1/Ue+3aAdLfGgIR0CB8ThXr+o+dX2UKGgGR8BQ9Ky0KJEZaAdLa2gIR0CB8W+UyHmBdX2UKGgGR8A0WX9itq59aAdLaWgIR0CB8c94eLeidX2UKGgGR8BR+zjBEa2naAdLdWgIR0CB8gig00m/dX2UKGgGR8BJySj59E1EaAdLpGgIR0CB8o8Empl0dX2UKGgGR8A9IdB0IToMaAdLgGgIR0CB8qNcW0qpdX2UKGgGR8BBR7QC0WuYaAdLVGgIR0CB8w2jwhGIdX2UKGgGR8BE0atDD0lJaAdLXGgIR0CB8yLhrFfidX2UKGgGR8BHRCLEUCaJaAdLSWgIR0CB85IDHOrydX2UKGgGR8BL6nY6GQCCaAdLXWgIR0CB88LUkOZtdX2UKGgGR8BHTlLnLaEjaAdLjmgIR0CB9AMb3oLYdX2UKGgGR8BRKUnTiKixaAdLdWgIR0CB9Bhl18sudX2UKGgGR8BS6nNHH3lCaAdLYGgIR0CB9BNr0rbydX2UKGgGR8BFfRRl6JIlaAdLeGgIR0CB9FMxGlQ/dX2UKGgGR8Bh7cTHsC1aaAdLamgIR0CB9N5fMOf/dX2UKGgGR8BgFLiEQGwBaAdLeWgIR0CB9RGhmGucdX2UKGgGR7/lotL+PzWgaAdLkGgIR0CB9TH6uW8idX2UKGgGR8BTQjKoybhFaAdLamgIR0CB9YSHuZ1FdX2UKGgGR8BGPrLIPsiTaAdLnGgIR0CB9YI55qubdX2UKGgGR8AzBEsasIVuaAdLUmgIR0CB9bwDNhVmdX2UKGgGR8A7b+rU9ZA6aAdLemgIR0CB9c0bcXWOdX2UKGgGR8Bb30nG8274aAdLbGgIR0CB9hWluWKNdX2UKGgGR8BWBC4e9zwMaAdLbmgIR0CB9rNGmUGFdX2UKGgGR8BD/IYWLxZuaAdLY2gIR0CB9vho/RmcdX2UKGgGR8BRY6Cg9NeuaAdLamgIR0CB9wKaXrt3dX2UKGgGR8BE+gUtZmqYaAdLh2gIR0CB9wg7o0Q9dX2UKGgGR8BKtjQiRnvlaAdLZWgIR0CB904lQdjodX2UKGgGR8AX/KhcqvvCaAdLUGgIR0CB98cH4XXRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}