Titeiiko commited on
Commit
4305192
1 Parent(s): b1518e5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +139 -6
README.md CHANGED
@@ -1,10 +1,143 @@
1
- ---
2
- license: bsd-3-clause
3
- ---
 
 
 
4
 
5
- Otis is an advanced anti-spam artificial intelligence model designed to mitigate and combat the proliferation of unwanted and malicious content within digital communication channels. Leveraging cutting-edge machine learning algorithms and sophisticated pattern recognition techniques.
6
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- label_0 -> Not Spam
9
 
10
- label_1 -> Spam
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- PROJECT LOGO -->
2
+ <br />
3
+ <div align="center">
4
+ <a href="https://github.com/BlossomDNS/register">
5
+ <img src="https://cdn.discordapp.com/attachments/660227834500874276/1175310288212463706/47._Big_Tree_1.png?ex=656ac400&is=65584f00&hm=0518b63834cd0da8208e79c1b019fd41e170aaa860d4812695fb8a43d43abc55&" alt="Logo" width="200" height="200">
6
+ </a>
7
 
8
+ <h3 align="center">Otis Anti-Spam AI</h3>
9
 
10
+ <p align="center">
11
+ Go Away Spam!
12
+ <br />
13
+ <a href="https://huggingface.co/Titeiiko/OTIS-Official-Spam-Model"><strong>禄 禄 Hugging Face</strong></a>
14
+ <br />
15
+ <br />
16
+ <div align="center">
17
+
18
+ ![GitHub forks](https://img.shields.io/github/forks/JewishLewish/otis?color=63C9A4&style=for-the-badge)
19
+ ![GitHub Repo stars](https://img.shields.io/github/stars/JewishLewish/otis?color=63C9A4&style=for-the-badge)
20
+ ![GitHub](https://img.shields.io/github/license/JewishLewish/otis?color=63C9A4&style=for-the-badge)
21
+ ![GitHub code size in bytes](https://img.shields.io/github/languages/code-size/JewishLewish/otis?color=63C9A4&style=for-the-badge)
22
 
23
+ </div>
24
 
25
+ </p>
26
+ </div>
27
+
28
+
29
+
30
+ <!-- TABLE OF CONTENTS -->
31
+ <details>
32
+ <summary>Table of Contents</summary>
33
+ <ol>
34
+ <li>
35
+ <a href="#Quickstart">Quickstart</a>
36
+ </li>
37
+ <li><a href="#contributing">Contributing</a></li>
38
+ <li><a href="#license">License</a></li>
39
+ <li><a href="#contact">Contact</a></li>
40
+ </ol>
41
+ </details>
42
+
43
+ <!-- Quickstar -->
44
+ ## Quickstart
45
+ ```py
46
+ # pip install transformers
47
+ from transformers import pipeline
48
+
49
+
50
+ def analyze_output(input: str):
51
+ pipe = pipeline("text-classification", model="Titeiiko/OTIS-Official-Spam-Model")
52
+ x = pipe(input)[0]
53
+ if x["label"] == "LABEL_0":
54
+ return {"type":"Not Spam", "probability":x["score"]}
55
+ else:
56
+ return {"type":"Spam", "probability":x["score"]}
57
+
58
+
59
+ print(analyze_output("C一eck out our amazin伞 b芯芯褧ting servi褋e 选here you can get to Leve訌 3 for 3 mont一s for just 20 USD."))
60
+
61
+ #Output: {'type': 'Spam', 'probability': 0.9996588230133057}
62
+ ```
63
+
64
+
65
+ <!-- ABOUT THE PROJECT -->
66
+ ## About The Project
67
+
68
+
69
+ Introducing Otis: Otis is an advanced anti-spam artificial intelligence model designed to mitigate and combat the proliferation of unwanted and malicious content within digital communication channels.
70
+
71
+
72
+ <p align="right">(<a href="#readme-top">back to top</a>)</p>
73
+
74
+ <!-- CONTRIBUTING -->
75
+ ## Contributing
76
+
77
+ Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are **greatly appreciated**.
78
+
79
+ If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement".
80
+ Don't forget to give the project a star! Thanks again!
81
+
82
+ 1. Fork the Project
83
+ 2. Create your Feature Branch (`git checkout -b JewishLewish/Otis`)
84
+ 3. Commit your Changes (`git commit -m 'Add some AmazingFeatures'`)
85
+ 4. Push to the Branch (`git push origin JewishLewish/Otis`)
86
+ 5. Open a Pull Request
87
+
88
+ <p align="right">(<a href="#readme-top">back to top</a>)</p>
89
+
90
+
91
+
92
+ <!-- LICENSE -->
93
+ ## License
94
+
95
+ Distributed under the BSD-3 License. See `LICENSE.txt` for more information.
96
+
97
+ <p align="right">(<a href="#readme-top">back to top</a>)</p>
98
+
99
+
100
+
101
+ <!-- CONTACT -->
102
+ ## Contact
103
+
104
+ My Email: lenny@lunes.host
105
+
106
+ <p align="right">(<a href="#readme-top">back to top</a>)</p>
107
+
108
+
109
+ # OtisV1
110
+
111
+ ```
112
+ {'loss': 0.2879, 'learning_rate': 4.75e-05, 'epoch': 0.5}
113
+ {'loss': 0.1868, 'learning_rate': 4.5e-05, 'epoch': 1.0}
114
+ {'eval_loss': 0.23244266211986542, 'eval_runtime': 4.2923, 'eval_samples_per_second': 465.951, 'eval_steps_per_second': 58.244, 'epoch': 1.0}
115
+ {'loss': 0.1462, 'learning_rate': 4.25e-05, 'epoch': 1.5}
116
+ {'loss': 0.1244, 'learning_rate': 4e-05, 'epoch': 2.0}
117
+ {'eval_loss': 0.19869782030582428, 'eval_runtime': 4.5759, 'eval_samples_per_second': 437.075, 'eval_steps_per_second': 54.634, 'epoch': 2.0}
118
+ {'loss': 0.0962, 'learning_rate': 3.7500000000000003e-05, 'epoch': 2.5}
119
+ {'loss': 0.07, 'learning_rate': 3.5e-05, 'epoch': 3.0}
120
+ {'eval_loss': 0.18761929869651794, 'eval_runtime': 4.1205, 'eval_samples_per_second': 485.372, 'eval_steps_per_second': 60.672, 'epoch': 3.0}
121
+ {'loss': 0.0553, 'learning_rate': 3.2500000000000004e-05, 'epoch': 3.5}
122
+ {'loss': 0.0721, 'learning_rate': 3e-05, 'epoch': 4.0}
123
+ {'eval_loss': 0.19852963089942932, 'eval_runtime': 3.992, 'eval_samples_per_second': 501.004, 'eval_steps_per_second': 62.625, 'epoch': 4.0}
124
+ {'loss': 0.0447, 'learning_rate': 2.7500000000000004e-05, 'epoch': 4.5}
125
+ {'loss': 0.0461, 'learning_rate': 2.5e-05, 'epoch': 5.0}
126
+ {'eval_loss': 0.20028768479824066, 'eval_runtime': 3.8479, 'eval_samples_per_second': 519.766, 'eval_steps_per_second': 64.971, 'epoch': 5.0}
127
+ {'loss': 0.0432, 'learning_rate': 2.25e-05, 'epoch': 5.5}
128
+ {'loss': 0.033, 'learning_rate': 2e-05, 'epoch': 6.0}
129
+ {'eval_loss': 0.20464178919792175, 'eval_runtime': 3.9167, 'eval_samples_per_second': 510.638, 'eval_steps_per_second': 63.83, 'epoch': 6.0}
130
+ {'loss': 0.0356, 'learning_rate': 1.75e-05, 'epoch': 6.5}
131
+ {'loss': 0.027, 'learning_rate': 1.5e-05, 'epoch': 7.0}
132
+ {'eval_loss': 0.20742492377758026, 'eval_runtime': 3.9716, 'eval_samples_per_second': 503.578, 'eval_steps_per_second': 62.947, 'epoch': 7.0}
133
+ {'loss': 0.0225, 'learning_rate': 1.25e-05, 'epoch': 7.5}
134
+ {'loss': 0.0329, 'learning_rate': 1e-05, 'epoch': 8.0}
135
+ {'eval_loss': 0.20604351162910461, 'eval_runtime': 4.0244, 'eval_samples_per_second': 496.964, 'eval_steps_per_second': 62.12, 'epoch': 8.0}
136
+ {'loss': 0.0221, 'learning_rate': 7.5e-06, 'epoch': 8.5}
137
+ {'loss': 0.0127, 'learning_rate': 5e-06, 'epoch': 9.0}
138
+ {'eval_loss': 0.21241146326065063, 'eval_runtime': 3.9242, 'eval_samples_per_second': 509.659, 'eval_steps_per_second': 63.707, 'epoch': 9.0}
139
+ {'loss': 0.0202, 'learning_rate': 2.5e-06, 'epoch': 9.5}
140
+ {'loss': 0.0229, 'learning_rate': 0.0, 'epoch': 10.0}
141
+ {'eval_loss': 0.2140526920557022, 'eval_runtime': 3.9546, 'eval_samples_per_second': 505.743, 'eval_steps_per_second': 63.218, 'epoch': 10.0}
142
+ {'train_runtime': 667.0781, 'train_samples_per_second': 119.926, 'train_steps_per_second': 14.991, 'train_loss': 0.07010261821746826, 'epoch': 10.0}
143
+ ```