Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
base_model: xlm-roberta-base
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
datasets:
|
7 |
- xtreme
|
8 |
metrics:
|
@@ -35,6 +33,8 @@ model-index:
|
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
value: 0.9194332683336213
|
|
|
|
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -50,19 +50,25 @@ It achieves the following results on the evaluation set:
|
|
50 |
- F1: 0.8057
|
51 |
- Accuracy: 0.9194
|
52 |
|
53 |
-
##
|
54 |
|
55 |
-
|
56 |
|
57 |
-
|
58 |
|
59 |
-
|
|
|
|
|
60 |
|
61 |
-
|
|
|
62 |
|
63 |
-
|
|
|
64 |
|
65 |
-
|
|
|
|
|
66 |
|
67 |
### Training hyperparameters
|
68 |
|
@@ -91,4 +97,4 @@ The following hyperparameters were used during training:
|
|
91 |
- Transformers 4.33.0
|
92 |
- Pytorch 2.0.0
|
93 |
- Datasets 2.1.0
|
94 |
-
- Tokenizers 0.13.3
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
base_model: xlm-roberta-base
|
|
|
|
|
4 |
datasets:
|
5 |
- xtreme
|
6 |
metrics:
|
|
|
33 |
- name: Accuracy
|
34 |
type: accuracy
|
35 |
value: 0.9194332683336213
|
36 |
+
language:
|
37 |
+
- en
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
50 |
- F1: 0.8057
|
51 |
- Accuracy: 0.9194
|
52 |
|
53 |
+
## Intended uses & limitations
|
54 |
|
55 |
+
#### How to use
|
56 |
|
57 |
+
You can use this model with Transformers *pipeline* for NER.
|
58 |
|
59 |
+
```python
|
60 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
61 |
+
from transformers import pipeline
|
62 |
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
64 |
+
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
65 |
|
66 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
67 |
+
example = "My name is Wolfgang and I live in Berlin"
|
68 |
|
69 |
+
ner_results = nlp(example)
|
70 |
+
print(ner_results)
|
71 |
+
```
|
72 |
|
73 |
### Training hyperparameters
|
74 |
|
|
|
97 |
- Transformers 4.33.0
|
98 |
- Pytorch 2.0.0
|
99 |
- Datasets 2.1.0
|
100 |
+
- Tokenizers 0.13.3
|