Threatthriver's picture
Upload folder using huggingface_hub
f24563f verified
"""
LLM model implementation.
"""
import jax
import jax.numpy as jnp
import flax.linen as nn
from typing import Optional, Tuple, Dict, Any, Callable, Union, List
import math
import time
from dataclasses import dataclass
from model.embedding import TokenEmbedding, RotaryPositionalEmbedding
from model.transformer import TransformerLayer
@dataclass
class LLMConfig:
"""
Configuration for LLM model.
Attributes:
vocab_size: Size of vocabulary
hidden_size: Hidden dimension
num_hidden_layers: Number of transformer layers
num_query_heads: Number of query heads
num_kv_heads: Number of key-value heads
intermediate_size: Hidden dimension in feed-forward network
hidden_act: Activation function
max_position_embeddings: Maximum sequence length
initializer_range: Standard deviation for initializers
rms_norm_eps: Epsilon for RMSNorm
use_cache: Whether to use cached key and values
pad_token_id: ID of padding token
bos_token_id: ID of beginning of sequence token
eos_token_id: ID of end of sequence token
tie_word_embeddings: Whether to tie input and output embeddings
rope_theta: Base for RoPE frequency computation
attention_dropout: Dropout probability for attention
hidden_dropout: Dropout probability for hidden states
dtype: Data type for computations
use_flash_attention: Whether to use flash attention for efficiency
use_gradient_checkpointing: Whether to use gradient checkpointing to save memory
use_rope_scaling: Whether to use RoPE scaling for longer contexts
rope_scaling_factor: Scaling factor for RoPE frequencies
use_parallel_residual: Whether to use parallel residual connections
use_reasoning_layer: Whether to use additional reasoning layers
num_reasoning_layers: Number of additional reasoning layers
reasoning_intermediate_size: Hidden dimension in reasoning feed-forward network
"""
vocab_size: int = 32000
hidden_size: int = 4096
num_hidden_layers: int = 32
num_query_heads: int = 32
num_kv_heads: int = 8
intermediate_size: int = 11008
hidden_act: str = "silu"
max_position_embeddings: int = 32768 # Increased to support longer contexts
initializer_range: float = 0.02
rms_norm_eps: float = 1e-5
use_cache: bool = True
pad_token_id: int = 0
bos_token_id: int = 1
eos_token_id: int = 2
tie_word_embeddings: bool = False
rope_theta: float = 10000.0
attention_dropout: float = 0.0
hidden_dropout: float = 0.0
dtype: jnp.dtype = jnp.float32
# Performance optimizations
use_flash_attention: bool = True # Use flash attention for efficiency
use_gradient_checkpointing: bool = True # Use gradient checkpointing to save memory
# Long context support
use_rope_scaling: bool = True # Use RoPE scaling for longer contexts
rope_scaling_factor: float = 0.5 # Scaling factor for RoPE frequencies
# Architecture enhancements
use_parallel_residual: bool = True # Use parallel residual connections
# Reasoning capabilities
use_reasoning_layer: bool = True # Use additional reasoning layers
num_reasoning_layers: int = 2 # Number of additional reasoning layers
reasoning_intermediate_size: int = 16384 # Hidden dimension in reasoning feed-forward network
class RMSNorm(nn.Module):
"""
Root Mean Square Layer Normalization.
Attributes:
dim: Hidden dimension
eps: Epsilon for numerical stability
dtype: Data type for computations
"""
dim: int
eps: float = 1e-5
dtype: jnp.dtype = jnp.float32
def setup(self):
self.weight = self.param(
'weight',
nn.initializers.ones,
(self.dim,),
self.dtype
)
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
"""
Apply RMSNorm.
Args:
x: Input tensor [batch_size, seq_len, dim]
Returns:
Normalized tensor [batch_size, seq_len, dim]
"""
# Calculate RMS
variance = jnp.mean(jnp.square(x), axis=-1, keepdims=True)
x = x * jax.lax.rsqrt(variance + self.eps)
# Scale with learned parameters
return x * self.weight
class ReasoningLayer(nn.Module):
"""
Reasoning layer for enhanced reasoning capabilities.
This layer adds additional processing to enhance the model's reasoning abilities.
It consists of a self-attention layer followed by a larger feed-forward network.
Attributes:
dim: Hidden dimension
num_query_heads: Number of query heads
num_kv_heads: Number of key-value heads
hidden_dim: Hidden dimension in feed-forward network
max_seq_len: Maximum sequence length
dropout_rate: Dropout probability
attention_dropout_rate: Dropout probability for attention
layer_norm_epsilon: Epsilon for layer normalization
use_flash_attention: Whether to use flash attention
dtype: Data type for computations
"""
dim: int
num_query_heads: int
num_kv_heads: int
hidden_dim: int
max_seq_len: int
dropout_rate: float = 0.0
attention_dropout_rate: float = 0.0
layer_norm_epsilon: float = 1e-5
use_flash_attention: bool = True
dtype: jnp.dtype = jnp.float32
def setup(self):
from model.attention import FlashAttention, RotaryMultiQueryAttention
from model.transformer import FeedForward
# Layer normalization
self.input_layernorm = RMSNorm(
dim=self.dim,
eps=self.layer_norm_epsilon,
dtype=self.dtype,
name="input_layernorm"
)
self.post_attention_layernorm = RMSNorm(
dim=self.dim,
eps=self.layer_norm_epsilon,
dtype=self.dtype,
name="post_attention_layernorm"
)
# Attention
if self.use_flash_attention:
self.attention = FlashAttention(
dim=self.dim,
num_heads=self.num_query_heads,
dropout_rate=self.attention_dropout_rate,
dtype=self.dtype,
name="attention"
)
else:
self.attention = RotaryMultiQueryAttention(
dim=self.dim,
num_query_heads=self.num_query_heads,
num_kv_heads=self.num_kv_heads,
max_seq_len=self.max_seq_len,
dropout_rate=self.attention_dropout_rate,
dtype=self.dtype,
name="attention"
)
# Feed-forward network with larger hidden dimension for reasoning
self.feed_forward = FeedForward(
dim=self.dim,
hidden_dim=self.hidden_dim,
dropout_rate=self.dropout_rate,
dtype=self.dtype,
name="feed_forward"
)
# Dropout
self.dropout = nn.Dropout(rate=self.dropout_rate)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
) -> jnp.ndarray:
"""
Apply reasoning layer.
Args:
hidden_states: Input tensor [batch_size, seq_len, dim]
attention_mask: Attention mask [batch_size, 1, seq_len, seq_len]
deterministic: Whether to use deterministic operations (no dropout)
Returns:
Output tensor [batch_size, seq_len, dim]
"""
# Self-attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attention_outputs = self.attention(
hidden_states=hidden_states,
attention_mask=attention_mask,
deterministic=deterministic,
)
hidden_states = attention_outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# Feed-forward network
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.feed_forward(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
return hidden_states
class LLM(nn.Module):
"""
Large Language Model implementation with enhanced reasoning capabilities and support for longer contexts.
Attributes:
config: Model configuration
"""
config: LLMConfig
def setup(self):
config = self.config
from model.attention import FlashAttention
# Token embeddings
self.embed_tokens = TokenEmbedding(
vocab_size=config.vocab_size,
embed_dim=config.hidden_size,
dtype=config.dtype,
name="embed_tokens"
)
# Transformer layers
self.layers = [
TransformerLayer(
dim=config.hidden_size,
num_query_heads=config.num_query_heads,
num_kv_heads=config.num_kv_heads,
hidden_dim=config.intermediate_size,
max_seq_len=config.max_position_embeddings,
dropout_rate=config.hidden_dropout,
attention_dropout_rate=config.attention_dropout,
layer_norm_epsilon=config.rms_norm_eps,
use_rope=True,
dtype=config.dtype,
name=f"layers_{i}"
)
for i in range(config.num_hidden_layers)
]
# Reasoning layers for enhanced reasoning capabilities
self.reasoning_layers = []
if config.use_reasoning_layer:
self.reasoning_layers = [
ReasoningLayer(
dim=config.hidden_size,
num_query_heads=config.num_query_heads,
num_kv_heads=config.num_kv_heads,
hidden_dim=config.reasoning_intermediate_size,
max_seq_len=config.max_position_embeddings,
dropout_rate=config.hidden_dropout,
attention_dropout_rate=config.attention_dropout,
layer_norm_epsilon=config.rms_norm_eps,
use_flash_attention=config.use_flash_attention,
dtype=config.dtype,
name=f"reasoning_layers_{i}"
)
for i in range(config.num_reasoning_layers)
]
# Final layer normalization
self.norm = RMSNorm(
dim=config.hidden_size,
eps=config.rms_norm_eps,
dtype=config.dtype,
name="norm"
)
# Output projection
if not config.tie_word_embeddings:
self.lm_head = nn.Dense(
features=config.vocab_size,
use_bias=False,
dtype=config.dtype,
kernel_init=nn.initializers.normal(stddev=config.initializer_range),
name="lm_head"
)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
past_key_values: Optional[List[Tuple[jnp.ndarray, jnp.ndarray]]] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
enable_reasoning: bool = True, # Whether to use reasoning layers
) -> Dict[str, jnp.ndarray]:
"""
Apply LLM model with enhanced reasoning capabilities.
Args:
input_ids: Token IDs [batch_size, seq_len]
attention_mask: Attention mask [batch_size, 1, seq_len, seq_len]
position_ids: Position indices [batch_size, seq_len]
past_key_values: Cached key and value tensors for incremental decoding
output_attentions: Whether to return attention weights
output_hidden_states: Whether to return hidden states
return_dict: Whether to return a dictionary
deterministic: Whether to use deterministic operations (no dropout)
enable_reasoning: Whether to use reasoning layers
Returns:
Dictionary of model outputs
"""
batch_size, seq_length = input_ids.shape
# Create position IDs if not provided
if position_ids is None:
position_ids = jnp.arange(seq_length)[None, :]
# Create causal attention mask if not provided
if attention_mask is None:
attention_mask = nn.make_causal_mask(input_ids)
# Embed tokens
hidden_states = self.embed_tokens(input_ids)
# Initialize past_key_values if None
if past_key_values is None:
past_key_values = [None] * self.config.num_hidden_layers
# Initialize lists for storing outputs
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_present_key_values = () if self.config.use_cache else None
# Apply transformer layers with gradient checkpointing if enabled
if self.config.use_gradient_checkpointing and not self.config.use_cache and not output_attentions:
# Define a custom layer application function for gradient checkpointing
def apply_layer(layer_idx, h, mask, pos_ids, past_kv):
layer = self.layers[layer_idx]
outputs = layer(
hidden_states=h,
attention_mask=mask,
position_ids=pos_ids,
past_key_value=past_kv,
output_attentions=False,
use_cache=False,
deterministic=deterministic,
)
return outputs[0]
# Apply layers with gradient checkpointing
for i in range(self.config.num_hidden_layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
# Apply gradient checkpointing
hidden_states = jax.checkpoint(
apply_layer,
static_argnums=(0, 4), # layer_idx and deterministic are static
)(i, hidden_states, attention_mask, position_ids, None)
else:
# Standard layer application without gradient checkpointing
for i, (layer, past_key_value) in enumerate(zip(self.layers, past_key_values)):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=self.config.use_cache,
deterministic=deterministic,
)
hidden_states = layer_outputs[0]
if self.config.use_cache:
all_present_key_values += (layer_outputs[2],)
if output_attentions:
all_attentions += (layer_outputs[1],)
# Apply reasoning layers if enabled and available
if enable_reasoning and self.config.use_reasoning_layer and self.reasoning_layers and not past_key_values[0]:
# Only apply reasoning layers during full-context processing (not during generation)
for reasoning_layer in self.reasoning_layers:
hidden_states = reasoning_layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
deterministic=deterministic,
)
# Apply final normalization
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
# Apply output projection
if hasattr(self, 'lm_head'):
logits = self.lm_head(hidden_states)
else:
# Tie weights with input embeddings
logits = jnp.matmul(hidden_states, self.embed_tokens.embedding.T)
if not return_dict:
return (logits, all_present_key_values, all_hidden_states, all_attentions)
return {
'logits': logits,
'past_key_values': all_present_key_values,
'hidden_states': all_hidden_states,
'attentions': all_attentions,
}
def generate(
self,
input_ids: jnp.ndarray,
max_length: int,
temperature: float = 1.0,
top_k: int = 0,
top_p: float = 1.0,
do_sample: bool = False,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
deterministic: bool = True,
) -> jnp.ndarray:
"""
Generate text using the model.
Args:
input_ids: Token IDs [batch_size, seq_len]
max_length: Maximum length of generated sequence
temperature: Temperature for sampling
top_k: Number of highest probability tokens to keep for top-k sampling
top_p: Cumulative probability for nucleus sampling
do_sample: Whether to sample or use greedy decoding
pad_token_id: ID of padding token
eos_token_id: ID of end of sequence token
deterministic: Whether to use deterministic operations (no dropout)
Returns:
Generated token IDs [batch_size, max_length]
"""
batch_size, seq_length = input_ids.shape
# Use model's token IDs if not provided
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
# Initialize generated sequences with input IDs
generated_ids = input_ids
# Initialize past key values
past_key_values = None
# Generate tokens up to max_length
for i in range(max_length - seq_length):
# Forward pass
outputs = self(
input_ids=generated_ids[:, -1:] if past_key_values is not None else generated_ids,
past_key_values=past_key_values,
deterministic=deterministic,
)
# Get logits and past key values
logits = outputs['logits'][:, -1, :]
past_key_values = outputs['past_key_values']
# Apply temperature
if temperature > 0:
logits = logits / temperature
# Apply top-k sampling
if top_k > 0:
top_k_logits, top_k_indices = jax.lax.top_k(logits, top_k)
logits = jnp.full_like(logits, float('-inf'))
logits = logits.at[jnp.arange(batch_size)[:, None], top_k_indices].set(top_k_logits)
# Apply top-p (nucleus) sampling
if top_p < 1.0:
sorted_logits, sorted_indices = jax.lax.sort(logits, dimension=-1, is_stable=True)
cumulative_probs = jnp.cumsum(jax.nn.softmax(sorted_logits, axis=-1), axis=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep the first token above the threshold
sorted_indices_to_remove = jnp.concatenate([
jnp.zeros_like(sorted_indices_to_remove[:, :1]),
sorted_indices_to_remove[:, :-1]
], axis=-1)
# Scatter sorted indices to original logits
indices_to_remove = jnp.zeros_like(sorted_indices_to_remove)
indices_to_remove = indices_to_remove.at[jnp.arange(batch_size)[:, None], sorted_indices].set(sorted_indices_to_remove)
logits = jnp.where(indices_to_remove, float('-inf'), logits)
# Sample or greedy decoding
if do_sample:
# Sample from the distribution
next_token_ids = jax.random.categorical(
jax.random.PRNGKey(int(time.time())), logits, axis=-1
)
else:
# Greedy decoding
next_token_ids = jnp.argmax(logits, axis=-1)
# Concatenate new tokens to generated IDs
generated_ids = jnp.concatenate([generated_ids, next_token_ids[:, None]], axis=1)
# Check if all sequences have reached EOS
if jnp.all(next_token_ids == eos_token_id):
break
return generated_ids