ThomasTheMaker commited on
Commit
f44ef3c
·
verified ·
1 Parent(s): 7246a80

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. pico-decoder-tiny-dolma29k-v2/logs/log_20250829_003838.log +24 -0
  2. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/config.json +22 -0
  3. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/fabric_state/checkpoint.pt +3 -0
  4. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/generation_config.json +4 -0
  5. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/learning_dynamics/train_activations.pt +3 -0
  6. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/learning_dynamics/train_data/data-00000-of-00001.arrow +3 -0
  7. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/learning_dynamics/train_data/dataset_info.json +19 -0
  8. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/learning_dynamics/train_data/state.json +13 -0
  9. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/learning_dynamics/train_gradients.pt +3 -0
  10. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/learning_dynamics/train_weights.pt +3 -0
  11. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/model.safetensors +3 -0
  12. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/pico_decoder.py +871 -0
  13. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/special_tokens_map.json +16 -0
  14. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/tokenizer.json +0 -0
  15. pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/tokenizer_config.json +239 -0
  16. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/config.json +22 -0
  17. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/fabric_state/checkpoint.pt +3 -0
  18. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/generation_config.json +4 -0
  19. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/learning_dynamics/train_activations.pt +3 -0
  20. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/learning_dynamics/train_data/data-00000-of-00001.arrow +3 -0
  21. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/learning_dynamics/train_data/dataset_info.json +19 -0
  22. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/learning_dynamics/train_data/state.json +13 -0
  23. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/learning_dynamics/train_gradients.pt +3 -0
  24. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/learning_dynamics/train_weights.pt +3 -0
  25. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/model.safetensors +3 -0
  26. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/pico_decoder.py +871 -0
  27. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/special_tokens_map.json +16 -0
  28. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/tokenizer.json +0 -0
  29. pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/tokenizer_config.json +239 -0
  30. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/config.json +22 -0
  31. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/fabric_state/checkpoint.pt +3 -0
  32. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/generation_config.json +4 -0
  33. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/learning_dynamics/train_activations.pt +3 -0
  34. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/learning_dynamics/train_data/data-00000-of-00001.arrow +3 -0
  35. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/learning_dynamics/train_data/dataset_info.json +19 -0
  36. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/learning_dynamics/train_data/state.json +13 -0
  37. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/learning_dynamics/train_gradients.pt +3 -0
  38. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/learning_dynamics/train_weights.pt +3 -0
  39. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/model.safetensors +3 -0
  40. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/pico_decoder.py +871 -0
  41. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/special_tokens_map.json +16 -0
  42. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/tokenizer.json +0 -0
  43. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/tokenizer_config.json +239 -0
  44. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/config.json +22 -0
  45. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/fabric_state/checkpoint.pt +3 -0
  46. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/generation_config.json +4 -0
  47. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/learning_dynamics/train_activations.pt +3 -0
  48. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/learning_dynamics/train_data/data-00000-of-00001.arrow +3 -0
  49. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/learning_dynamics/train_data/dataset_info.json +19 -0
  50. pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/learning_dynamics/train_data/state.json +13 -0
pico-decoder-tiny-dolma29k-v2/logs/log_20250829_003838.log CHANGED
@@ -542,3 +542,27 @@
542
  2025-08-29 01:38:25 - pico-train - INFO - ├── Loss: 6.6522
543
  2025-08-29 01:38:25 - pico-train - INFO - ├── Learning Rate: 9.99e-05
544
  2025-08-29 01:38:25 - pico-train - INFO - └── Inf/NaN count: 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542
  2025-08-29 01:38:25 - pico-train - INFO - ├── Loss: 6.6522
543
  2025-08-29 01:38:25 - pico-train - INFO - ├── Learning Rate: 9.99e-05
544
  2025-08-29 01:38:25 - pico-train - INFO - └── Inf/NaN count: 0
545
+ 2025-08-29 01:38:51 - pico-train - INFO - Step 5250 -- 🔄 Training Metrics
546
+ 2025-08-29 01:38:51 - pico-train - INFO - ├── Loss: 6.6270
547
+ 2025-08-29 01:38:51 - pico-train - INFO - ├── Learning Rate: 9.99e-05
548
+ 2025-08-29 01:38:51 - pico-train - INFO - └── Inf/NaN count: 0
549
+ 2025-08-29 01:39:17 - pico-train - INFO - Step 5300 -- 🔄 Training Metrics
550
+ 2025-08-29 01:39:17 - pico-train - INFO - ├── Loss: 6.5733
551
+ 2025-08-29 01:39:17 - pico-train - INFO - ├── Learning Rate: 9.98e-05
552
+ 2025-08-29 01:39:17 - pico-train - INFO - └── Inf/NaN count: 0
553
+ 2025-08-29 01:39:43 - pico-train - INFO - Step 5350 -- 🔄 Training Metrics
554
+ 2025-08-29 01:39:43 - pico-train - INFO - ├── Loss: 6.5833
555
+ 2025-08-29 01:39:43 - pico-train - INFO - ├── Learning Rate: 9.98e-05
556
+ 2025-08-29 01:39:43 - pico-train - INFO - └── Inf/NaN count: 0
557
+ 2025-08-29 01:40:09 - pico-train - INFO - Step 5400 -- 🔄 Training Metrics
558
+ 2025-08-29 01:40:09 - pico-train - INFO - ├── Loss: 6.5854
559
+ 2025-08-29 01:40:09 - pico-train - INFO - ├── Learning Rate: 9.98e-05
560
+ 2025-08-29 01:40:09 - pico-train - INFO - └── Inf/NaN count: 0
561
+ 2025-08-29 01:40:35 - pico-train - INFO - Step 5450 -- 🔄 Training Metrics
562
+ 2025-08-29 01:40:35 - pico-train - INFO - ├── Loss: 6.6012
563
+ 2025-08-29 01:40:35 - pico-train - INFO - ├── Learning Rate: 9.98e-05
564
+ 2025-08-29 01:40:35 - pico-train - INFO - └── Inf/NaN count: 0
565
+ 2025-08-29 01:41:01 - pico-train - INFO - Step 5500 -- 🔄 Training Metrics
566
+ 2025-08-29 01:41:01 - pico-train - INFO - ├── Loss: 6.5786
567
+ 2025-08-29 01:41:01 - pico-train - INFO - ├── Learning Rate: 9.97e-05
568
+ 2025-08-29 01:41:01 - pico-train - INFO - └── Inf/NaN count: 0
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_hidden_dim": 384,
3
+ "architectures": [
4
+ "PicoDecoderHF"
5
+ ],
6
+ "attention_n_heads": 12,
7
+ "attention_n_kv_heads": 4,
8
+ "auto_map": {
9
+ "AutoConfig": "pico_decoder.PicoDecoderHFConfig",
10
+ "AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
11
+ },
12
+ "batch_size": 1024,
13
+ "d_model": 96,
14
+ "max_seq_len": 2048,
15
+ "model_type": "pico_decoder",
16
+ "n_layers": 12,
17
+ "norm_eps": 1e-06,
18
+ "position_emb_theta": 10000.0,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.48.3",
21
+ "vocab_size": 50304
22
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/fabric_state/checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9498c944ba3e17bb15653b6f317bdf4485b00ee09b25b1ae103b1ed90f03fb1
3
+ size 45187997
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "transformers_version": "4.48.3",
3
+ "vocab_size": 50304
4
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/learning_dynamics/train_activations.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f02d57ee3f9eda5191db5435eb8de6a9464ba63205377de24ca75268969c58c
3
+ size 33819
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/learning_dynamics/train_data/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:254891345b1a9d809e9c5c0a1532693b94d769025a317ad82bc418dfa3f7b40b
3
+ size 71640
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/learning_dynamics/train_data/dataset_info.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "citation": "",
3
+ "description": "",
4
+ "features": {
5
+ "input_ids": {
6
+ "feature": {
7
+ "dtype": "int32",
8
+ "_type": "Value"
9
+ },
10
+ "_type": "Sequence"
11
+ },
12
+ "text": {
13
+ "dtype": "string",
14
+ "_type": "Value"
15
+ }
16
+ },
17
+ "homepage": "",
18
+ "license": ""
19
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/learning_dynamics/train_data/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "3da9a89786e6494d",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": null
13
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/learning_dynamics/train_gradients.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37b86ac40a6afa81d719cba3f4b98a0cd62a5bb0276e410fad79405dc7c3603b
3
+ size 2371527
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/learning_dynamics/train_weights.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c029ef92a6494ae121c847e432e52e6a8ff3bf7d9fef3e61bef871c1e9a9aa02
3
+ size 2371443
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1852515eb5c8556533445f22edf523884b9f8cc44812379a6a951668a4ffa3a3
3
+ size 45143592
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/pico_decoder.py ADDED
@@ -0,0 +1,871 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Pico Decoder: A Lightweight Causal Transformer Language Model
3
+
4
+ Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
5
+
6
+ Everything is written with a modular design for easy modification and experimentation.
7
+
8
+ Key features:
9
+ - RMSNorm for layer normalization
10
+ - Rotary Positional Embeddings (RoPE)
11
+ - Multi-head attention with KV-cache support
12
+ - SwiGLU activation function
13
+ - Residual connections throughout
14
+
15
+ - KV-cache for faster autoregressive generation
16
+
17
+ References:
18
+ - RoPE: https://arxiv.org/abs/2104.09864
19
+ - SwiGLU: https://arxiv.org/abs/2002.05202
20
+ - LLAMA: https://arxiv.org/abs/2302.13971
21
+
22
+ Adapted from:
23
+ - OLMO: https://github.com/allenai/OLMo
24
+ - LLAMA: https://github.com/meta/llama
25
+ """
26
+
27
+ from dataclasses import asdict
28
+ from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
29
+
30
+ import torch
31
+ import torch.nn as nn
32
+ import torch.nn.functional as F
33
+ from torch.nn.attention import SDPBackend, sdpa_kernel
34
+ from transformers import GenerationMixin, PretrainedConfig, PreTrainedModel
35
+ from transformers.generation import GenerationConfig
36
+ from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
37
+
38
+ try:
39
+ if TYPE_CHECKING:
40
+ # We need to do this to avoid importing these when creating the HF-compatible models
41
+ from src.config import ModelConfig
42
+ except ImportError:
43
+ pass
44
+
45
+ ########################################################
46
+ #
47
+ # Layer Normalization
48
+ #
49
+ ########################################################
50
+
51
+
52
+ class RMSNorm(torch.nn.Module):
53
+ """Root Mean Square Layer Normalization.
54
+
55
+ A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
56
+ resulting in improved stability and performance.
57
+
58
+ Args:
59
+ config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
60
+ - config.norm_eps: Small constant for numerical stability
61
+ - config.d_model: Model dimension for the weight parameter
62
+
63
+ References:
64
+ https://arxiv.org/abs/1910.07467
65
+ """
66
+
67
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
68
+ super().__init__()
69
+ self.eps = config.norm_eps
70
+ self.weight = nn.Parameter(torch.ones(config.d_model))
71
+
72
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
73
+ """
74
+ Normalizes the input tensor by its RMS value.
75
+ """
76
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
77
+
78
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
79
+ """
80
+ Applies RMS normalization to the input tensor and scales it by the weight parameter.
81
+ """
82
+ output = self._norm(x.float()).type_as(x)
83
+ return output * self.weight
84
+
85
+
86
+ ########################################################
87
+ #
88
+ # Positional Embedding
89
+ #
90
+ ########################################################
91
+
92
+
93
+ class RoPE(nn.Module):
94
+ """Rotary Positional Embeddings (RoPE).
95
+
96
+ Implements position-dependent rotation of keys and queries in attention mechanism,
97
+ allowing better modeling of relative positions in sequences. Uses complex number
98
+ operations for efficient rotation.
99
+
100
+ Args:
101
+ config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
102
+ - config.position_emb_theta: Base for frequency computation
103
+ - config.d_model: Model dimension
104
+ - config.attention_n_heads: Number of attention heads
105
+ - config.max_seq_len: Maximum sequence length
106
+
107
+ References:
108
+ https://arxiv.org/abs/2104.09864
109
+ """
110
+
111
+ _freqs_cis_tensor: torch.Tensor | None = None
112
+
113
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
114
+ super().__init__()
115
+
116
+ self.theta = config.position_emb_theta
117
+ self.dim = config.d_model // config.attention_n_heads
118
+
119
+ max_seq_len = config.max_seq_len
120
+
121
+ # only gets set once, and then reused for all RoPE instances
122
+ if RoPE._freqs_cis_tensor is None:
123
+ RoPE._freqs_cis_tensor = self._setup_freqs_cis(
124
+ max_seq_len, self.theta, self.dim
125
+ )
126
+
127
+ # register _freqs_cis buffer
128
+ # can be easily recomputed so persistent=False
129
+ self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
130
+
131
+ @classmethod
132
+ def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
133
+ """Setup Frequency Tensor for RoPE Embeddings
134
+
135
+ Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
136
+
137
+ Note other implementations will use cos and sin directly, but using the complex
138
+ number representation is (probably) more efficient:
139
+
140
+ e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
141
+ """
142
+ _freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
143
+ positions = torch.arange(seq_len)
144
+ freqs = torch.outer(positions, _freqs)
145
+ return torch.polar(torch.ones_like(freqs), freqs) # complex64
146
+
147
+ def get_freqs_cis(
148
+ self, input_shape: torch.Size, start_pos: int, end_pos: int
149
+ ) -> torch.Tensor:
150
+ """Reshape Frequency Tensor for RoPE Embeddings
151
+
152
+ Makes the frequency tensor broadcastable with the input tensor.
153
+ """
154
+ _freqs_cis = self._freqs_cis[start_pos:end_pos]
155
+ ndim = len(input_shape)
156
+ assert 0 <= 1 < ndim
157
+ assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
158
+
159
+ # TODO: Check whether this is correct (might be able to remove this)
160
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
161
+ return _freqs_cis.view(*shape)
162
+
163
+ def forward(
164
+ self,
165
+ queries: torch.Tensor,
166
+ keys: torch.Tensor,
167
+ start_pos: int = 0,
168
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
169
+ """Apply RoPE Embeddings to Queries and Keys
170
+
171
+ Applies the rotary positional embeddings to the input tensors via complex num multiplication
172
+
173
+ NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
174
+ """
175
+ queries_ = torch.view_as_complex(
176
+ queries.float().reshape(*queries.shape[:-1], -1, 2)
177
+ )
178
+ keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
179
+
180
+ input_shape = (
181
+ queries_.shape
182
+ ) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
183
+ freqs_start_pos = start_pos
184
+ freqs_end_pos = freqs_start_pos + queries_.shape[1]
185
+
186
+ freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
187
+
188
+ queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
189
+ keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
190
+ return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
191
+
192
+
193
+ ########################################################
194
+ #
195
+ # Attention
196
+ #
197
+ ########################################################
198
+
199
+
200
+ class Attention(nn.Module):
201
+ """Multi-head Attention with Group Query Attention support.
202
+
203
+ Implements scaled dot-product attention and supports:
204
+ - Grouped Query Attention (GQA)
205
+ - Key-Value caching for efficient inference
206
+ - RoPE integration
207
+
208
+ Args:
209
+ config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
210
+ - config.attention_n_heads: Number of attention heads
211
+ - config.attention_n_kv_heads: Number of key/value heads
212
+ - config.d_model: Model dimension
213
+ - config.batch_size: Maximum batch size
214
+ - config.max_seq_len: Maximum sequence length
215
+
216
+ Shape:
217
+ - Input: (batch_size, seq_len, d_model)
218
+ - Output: (batch_size, seq_len, d_model)
219
+ """
220
+
221
+ def __init__(
222
+ self,
223
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
224
+ ):
225
+ super().__init__()
226
+
227
+ self.n_heads = config.attention_n_heads
228
+ self.n_kv_heads = config.attention_n_kv_heads
229
+
230
+ self.batch_size = config.batch_size
231
+ self.max_seq_len = config.max_seq_len
232
+
233
+ d_model = config.d_model
234
+ self.head_dim = d_model // self.n_heads
235
+
236
+ self.n_rep = self.n_heads // self.n_kv_heads
237
+
238
+ self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
239
+ self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
240
+ self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
241
+ self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
242
+
243
+ self.rope = RoPE(config)
244
+
245
+ def forward(
246
+ self,
247
+ input: torch.Tensor,
248
+ mask: Optional[torch.Tensor] = None,
249
+ past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
250
+ use_cache: bool = False,
251
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
252
+ """Forward pass for the attention mechanism.
253
+
254
+ Computes queries, keys, and values for the attention mechanism. Applies rotary positional
255
+ embeddings to the queries and keys, and then computes attention scores and outputs.
256
+
257
+ For an introduction to the attention mechanism, see:
258
+ https://arxiv.org/abs/1706.03762
259
+
260
+ A few things to note:
261
+ - The past_key_values is used to implement the KV cache, which is used to speed up
262
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
263
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
264
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
265
+ its own KV cache - this KV cache is implemented as a tuple.
266
+ """
267
+ bsz, seq_len, _ = input.shape
268
+ _queries, _keys, _values = (
269
+ self.q_proj(input),
270
+ self.k_proj(input),
271
+ self.v_proj(input),
272
+ )
273
+
274
+ # Reshaping for multi-head attention
275
+ queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
276
+ keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
277
+ values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
278
+
279
+ # The start position is used to apply the RoPE embeddings to only the new tokens
280
+ # when using the kv_cache in the attention mechanism.
281
+ # We want to start from the last position in the cache.
282
+ start_pos = past_key_values[0].shape[1] if past_key_values is not None else 0
283
+
284
+ # apply rotary positional embeddings
285
+ queries, keys = self.rope(queries, keys, start_pos)
286
+
287
+ if past_key_values is not None:
288
+ keys = torch.cat([past_key_values[0], keys], dim=1)
289
+ values = torch.cat([past_key_values[1], values], dim=1)
290
+
291
+ if use_cache:
292
+ cached_keys = keys
293
+ cached_values = values
294
+ else:
295
+ cached_keys = None
296
+ cached_values = None
297
+
298
+ queries = queries.transpose(1, 2)
299
+ keys = keys.transpose(1, 2)
300
+ values = values.transpose(1, 2)
301
+
302
+ apply_gqa = self.n_rep > 1
303
+ if apply_gqa and queries.device.type == "mps":
304
+ # NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
305
+ # outside of the kernel to get the same effect.
306
+ # See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
307
+ keys = keys.repeat_interleave(self.n_rep, dim=-3)
308
+ values = values.repeat_interleave(self.n_rep, dim=-3)
309
+ apply_gqa = False
310
+
311
+ backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
312
+
313
+ with sdpa_kernel(backends=backends):
314
+ attn_output = F.scaled_dot_product_attention(
315
+ queries.contiguous(),
316
+ keys.contiguous(),
317
+ values.contiguous(),
318
+ attn_mask=mask.to(queries.dtype) if mask is not None else None,
319
+ enable_gqa=apply_gqa,
320
+ )
321
+
322
+ attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
323
+ output = self.o_proj(attn_output)
324
+
325
+ return output, (cached_keys, cached_values)
326
+
327
+
328
+ ########################################################
329
+ #
330
+ # SwiGLU (Combines MLP and Activation)
331
+ #
332
+ ########################################################
333
+
334
+
335
+ class SwiGLU(nn.Module):
336
+ """SwiGLU Activation Function with Linear Projections.
337
+
338
+ Implements the SwiGLU activation function combined with linear transformations,
339
+ serving as the feed-forward network in transformer blocks.
340
+
341
+ Args:
342
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
343
+ - config.d_model: Model dimension
344
+ - config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
345
+
346
+ References:
347
+ https://arxiv.org/abs/2002.05202
348
+ """
349
+
350
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
351
+ super().__init__()
352
+
353
+ model_dim = config.d_model
354
+ act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
355
+
356
+ self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
357
+ self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
358
+ self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
359
+
360
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
361
+ return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
362
+
363
+
364
+ ########################################################
365
+ #
366
+ # PicoDecoderBlock
367
+ #
368
+ ########################################################
369
+
370
+
371
+ class PicoDecoderBlock(nn.Module):
372
+ """Single Transformer Block with Attention and Feed-forward layers.
373
+
374
+ Implements a standard transformer block with:
375
+ - Multi-head attention with normalization and residual connection
376
+ - SwiGLU feed-forward network with normalization and residual connection
377
+
378
+ Args:
379
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
380
+ a HuggingFace PicoDecoderHFConfig
381
+ """
382
+
383
+ def __init__(
384
+ self,
385
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
386
+ ):
387
+ super().__init__()
388
+
389
+ self.attention = Attention(config)
390
+ self.swiglu = SwiGLU(config)
391
+ self.attention_norm = RMSNorm(config)
392
+ self.swiglu_norm = RMSNorm(config)
393
+
394
+ def forward(
395
+ self,
396
+ input: torch.Tensor,
397
+ mask: Optional[torch.Tensor] = None,
398
+ past_key_values: Optional[Tuple[torch.Tensor]] = None,
399
+ use_cache: bool = False,
400
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
401
+ attention_output, cached_key_values = self.attention(
402
+ self.attention_norm(input),
403
+ mask=mask,
404
+ past_key_values=past_key_values,
405
+ use_cache=use_cache,
406
+ )
407
+ # NOTE: cached_key_values is None if use_cache is False
408
+
409
+ h = input + attention_output
410
+ out = h + self.swiglu(self.swiglu_norm(h))
411
+ return out, cached_key_values
412
+
413
+
414
+ ########################################################
415
+ #
416
+ # Pico Decoder (Causal Transformer Model)
417
+ #
418
+ ########################################################
419
+
420
+
421
+ class PicoDecoder(nn.Module):
422
+ """
423
+ Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
424
+ single autoregressive model.
425
+
426
+ For more information on the model, see the classes for the modules that make up the model.
427
+ """
428
+
429
+ def __init__(
430
+ self,
431
+ model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
432
+ ):
433
+ super().__init__()
434
+ self.config = model_config
435
+
436
+ self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
437
+ self.layers = nn.ModuleList(
438
+ [PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
439
+ )
440
+ self.output_norm = RMSNorm(self.config)
441
+ self.de_embedding_proj = nn.Linear(
442
+ self.config.d_model, self.config.vocab_size, bias=False
443
+ )
444
+
445
+ def convert_to_hf_model(self) -> "PicoDecoderHF":
446
+ """Convert the Lightning model to a HuggingFace model."""
447
+ # Create HF config without fabric-specific settings
448
+ hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
449
+
450
+ # Create new HF model
451
+ hf_model = PicoDecoderHF(hf_config)
452
+
453
+ # Copy state dict, excluding fabric-specific keys
454
+ hf_model.load_state_dict(self.state_dict(prefix="pico_decoder."))
455
+
456
+ return hf_model
457
+
458
+ def forward(
459
+ self,
460
+ input_ids: torch.Tensor,
461
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
462
+ use_cache: bool = False,
463
+ ) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
464
+ """
465
+ This is the forward pass for the entire Pico model. It boils down to:
466
+ - Embedding the input ids
467
+ - Creating a causal mask
468
+ - Processing through the pico layers
469
+ - Projecting the output to logits
470
+
471
+ NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
472
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
473
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
474
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
475
+ its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
476
+ KV caches (so a tuple of tuples).
477
+ """
478
+
479
+ seq_len = input_ids.shape[-1]
480
+ h = self.embedding_proj(input_ids)
481
+
482
+ # Calculate start position from past cached KV pairs. Remember that each layer has its
483
+ # own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
484
+ # correct layer and then for either the keys or values.
485
+ start_pos = 0 if past_key_values is None else past_key_values[0][0].shape[1]
486
+
487
+ # Create causal mask for current sequence
488
+ mask = None
489
+ if seq_len > 1:
490
+ mask = torch.full((seq_len, seq_len), float("-inf"))
491
+ mask = torch.triu(mask, diagonal=1)
492
+
493
+ # If using KV cache, extend mask to cover cached sequence length
494
+ if past_key_values is not None:
495
+ # Add zeros for cached tokens (we can attend to all of them)
496
+ mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
497
+
498
+ mask = mask.to(h.device)
499
+
500
+ # NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
501
+ # in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
502
+ cached_key_values = () if use_cache else None
503
+
504
+ # Process through transformer blocks
505
+ for idx, layer in enumerate(self.layers):
506
+ layer_past_key_values = (
507
+ past_key_values[idx] if past_key_values is not None else None
508
+ )
509
+
510
+ h, layer_cached_key_values = layer(
511
+ h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
512
+ )
513
+
514
+ if use_cache:
515
+ cached_key_values += (layer_cached_key_values,)
516
+
517
+ # Final norm and projection
518
+ h = self.output_norm(h)
519
+ logits = self.de_embedding_proj(h).float()
520
+
521
+ return logits, cached_key_values
522
+
523
+
524
+ ########################################################
525
+ #
526
+ # HuggingFace Wrapper for the Pico Decoder model.
527
+ #
528
+ ########################################################
529
+
530
+
531
+ class PicoDecoderHFConfig(PretrainedConfig):
532
+ """Config class for the Pico Decoder HuggingFace wrapper."""
533
+
534
+ model_type = "pico_decoder"
535
+
536
+ @classmethod
537
+ def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
538
+ """
539
+ Initialize config from a dictionary. Note that no kwargs are passed to the constructor --
540
+ this is because with some kwargs special handling is required and can make this class
541
+ brittle.
542
+ """
543
+ pico_config = cls(**config_dict)
544
+
545
+ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
546
+ unused_kwargs = {
547
+ key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
548
+ }
549
+
550
+ if return_unused_kwargs:
551
+ return pico_config, unused_kwargs
552
+ return pico_config
553
+
554
+ @classmethod
555
+ def from_dataclass(cls, model_config: "ModelConfig"):
556
+ """Initialise from our custom config dataclass."""
557
+ return cls.from_dict(asdict(model_config))
558
+
559
+
560
+ class PicoDecoderHF(PreTrainedModel, GenerationMixin):
561
+ """
562
+ HuggingFace wrapper for the Pico model with generation support.
563
+
564
+ Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
565
+ wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
566
+ Pico model as well as the model wrapped in this HuggingFace class.
567
+
568
+ This also lets you do cool things like:
569
+
570
+ `model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
571
+ """
572
+
573
+ config_class = PicoDecoderHFConfig
574
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
575
+ main_input_name = "input_ids"
576
+
577
+ def __init__(self, config: PicoDecoderHFConfig):
578
+ super().__init__(config)
579
+ self.pico_decoder = PicoDecoder(config)
580
+ # Initialize generation config with defaults
581
+ self.generation_config = GenerationConfig()
582
+ # Set some reasonable defaults for the model
583
+ if hasattr(config, "max_position_embeddings"):
584
+ self.generation_config.max_length = config.max_position_embeddings
585
+ if hasattr(config, "vocab_size"):
586
+ self.generation_config.vocab_size = config.vocab_size
587
+
588
+ def forward(
589
+ self,
590
+ input_ids: torch.Tensor,
591
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
592
+ use_cache: bool = False,
593
+ **kwargs,
594
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
595
+ """HuggingFace forward pass wrapper.
596
+
597
+ Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
598
+ Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
599
+ """
600
+ logits, past_key_values = self.pico_decoder(
601
+ input_ids, past_key_values, use_cache
602
+ )
603
+ if use_cache:
604
+ return CausalLMOutputWithPast(
605
+ logits=logits,
606
+ past_key_values=past_key_values,
607
+ )
608
+ else:
609
+ return CausalLMOutput(
610
+ logits=logits,
611
+ )
612
+
613
+ def prepare_inputs_for_generation(
614
+ self,
615
+ input_ids: torch.LongTensor,
616
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
617
+ attention_mask: Optional[torch.LongTensor] = None,
618
+ **kwargs,
619
+ ) -> Dict[str, Any]:
620
+ """
621
+ Prepare inputs for generation.
622
+
623
+ Args:
624
+ input_ids: Input token IDs
625
+ past_key_values: Cached key-value pairs from previous forward passes
626
+ attention_mask: Attention mask for the input
627
+ **kwargs: Additional arguments
628
+
629
+ Returns:
630
+ Dictionary containing prepared inputs
631
+ """
632
+ # If we have past_key_values, we only need the last token
633
+ if past_key_values is not None:
634
+ input_ids = input_ids[:, -1:]
635
+
636
+ return {
637
+ "input_ids": input_ids,
638
+ "past_key_values": past_key_values,
639
+ "use_cache": True,
640
+ }
641
+
642
+ def get_input_embeddings(self):
643
+ """Get the input embeddings layer."""
644
+ return self.pico_decoder.embedding_proj
645
+
646
+ def set_input_embeddings(self, value):
647
+ """Set the input embeddings layer."""
648
+ self.pico_decoder.embedding_proj = value
649
+
650
+ def get_output_embeddings(self):
651
+ """Get the output embeddings layer."""
652
+ return self.pico_decoder.de_embedding_proj
653
+
654
+ def set_output_embeddings(self, value):
655
+ """Set the output embeddings layer."""
656
+ self.pico_decoder.de_embedding_proj = value
657
+
658
+ def get_lm_head(self):
659
+ """Get the language model head."""
660
+ return self.pico_decoder.de_embedding_proj
661
+
662
+ def can_generate(self) -> bool:
663
+ """Check if the model can generate text."""
664
+ return True
665
+
666
+ @property
667
+ def is_encoder_decoder(self) -> bool:
668
+ """Check if the model is an encoder-decoder model."""
669
+ return False
670
+
671
+ @property
672
+ def can_use_cache(self) -> bool:
673
+ """Check if the model can use KV cache."""
674
+ return True
675
+
676
+ def resize_token_embeddings(
677
+ self, new_num_tokens: Optional[int] = None
678
+ ) -> torch.nn.Embedding:
679
+ """Resize token embeddings."""
680
+ old_embeddings = self.get_input_embeddings()
681
+ if new_num_tokens is None:
682
+ new_num_tokens = old_embeddings.num_embeddings
683
+
684
+ new_embeddings = torch.nn.Embedding(
685
+ new_num_tokens, old_embeddings.embedding_dim
686
+ )
687
+ new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
688
+ old_embeddings.weight.data
689
+ )
690
+
691
+ self.pico_decoder.embedding_proj = new_embeddings
692
+ self.pico_decoder.de_embedding_proj = torch.nn.Linear(
693
+ old_embeddings.embedding_dim, new_num_tokens, bias=False
694
+ )
695
+
696
+ return new_embeddings
697
+
698
+
699
+ # Register for auto classes
700
+ PicoDecoderHFConfig.register_for_auto_class()
701
+ PicoDecoderHF.register_for_auto_class("AutoModel")
702
+ PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
703
+
704
+
705
+ ########################################################
706
+ #
707
+ # New PicoDecoderForCausalLM class for generation support
708
+ #
709
+ ########################################################
710
+
711
+
712
+ class PicoDecoderForCausalLM(PreTrainedModel, GenerationMixin):
713
+ """
714
+ PicoDecoderForCausalLM: A HuggingFace-compatible model that properly supports generation.
715
+
716
+ This class is designed to work with existing checkpoints and provides full generation support.
717
+ It inherits from the right base classes that HuggingFace expects for text generation.
718
+ """
719
+
720
+ config_class = PicoDecoderHFConfig
721
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
722
+ main_input_name = "input_ids"
723
+
724
+ def __init__(self, config: PicoDecoderHFConfig):
725
+ super().__init__(config)
726
+ self.pico_decoder = PicoDecoder(config)
727
+ # Initialize generation config with defaults
728
+ self.generation_config = GenerationConfig()
729
+ # Set some reasonable defaults for the model
730
+ if hasattr(config, "max_position_embeddings"):
731
+ self.generation_config.max_length = config.max_position_embeddings
732
+ if hasattr(config, "vocab_size"):
733
+ self.generation_config.vocab_size = config.vocab_size
734
+
735
+ def forward(
736
+ self,
737
+ input_ids: torch.Tensor,
738
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
739
+ use_cache: bool = False,
740
+ **kwargs,
741
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
742
+ """Forward pass for text generation."""
743
+ logits, past_key_values = self.pico_decoder(
744
+ input_ids, past_key_values, use_cache
745
+ )
746
+ if use_cache:
747
+ return CausalLMOutputWithPast(
748
+ logits=logits,
749
+ past_key_values=past_key_values,
750
+ )
751
+ else:
752
+ return CausalLMOutput(
753
+ logits=logits,
754
+ )
755
+
756
+ def prepare_inputs_for_generation(
757
+ self,
758
+ input_ids: torch.LongTensor,
759
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
760
+ attention_mask: Optional[torch.LongTensor] = None,
761
+ **kwargs,
762
+ ) -> Dict[str, Any]:
763
+ """Prepare inputs for generation."""
764
+ # If we have past_key_values, we only need the last token
765
+ if past_key_values is not None:
766
+ input_ids = input_ids[:, -1:]
767
+
768
+ return {
769
+ "input_ids": input_ids,
770
+ "past_key_values": past_key_values,
771
+ "use_cache": True,
772
+ }
773
+
774
+ def get_input_embeddings(self):
775
+ """Get the input embeddings layer."""
776
+ return self.pico_decoder.embedding_proj
777
+
778
+ def set_input_embeddings(self, value):
779
+ """Set the input embeddings layer."""
780
+ self.pico_decoder.embedding_proj = value
781
+
782
+ def get_output_embeddings(self):
783
+ """Get the output embeddings layer."""
784
+ return self.pico_decoder.de_embedding_proj
785
+
786
+ def set_output_embeddings(self, value):
787
+ """Set the output embeddings layer."""
788
+ self.pico_decoder.de_embedding_proj = value
789
+
790
+ def get_lm_head(self):
791
+ """Get the language model head."""
792
+ return self.pico_decoder.de_embedding_proj
793
+
794
+ def can_generate(self) -> bool:
795
+ """Check if the model can generate text."""
796
+ return True
797
+
798
+ @property
799
+ def is_encoder_decoder(self) -> bool:
800
+ """Check if the model is an encoder-decoder model."""
801
+ return False
802
+
803
+ @property
804
+ def can_use_cache(self) -> bool:
805
+ """Check if the model can use KV cache."""
806
+ return True
807
+
808
+ def resize_token_embeddings(
809
+ self, new_num_tokens: Optional[int] = None
810
+ ) -> torch.nn.Embedding:
811
+ """Resize token embeddings."""
812
+ old_embeddings = self.get_input_embeddings()
813
+ if new_num_tokens is None:
814
+ new_num_tokens = old_embeddings.num_embeddings
815
+
816
+ new_embeddings = torch.nn.Embedding(
817
+ new_num_tokens, old_embeddings.embedding_dim
818
+ )
819
+ new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
820
+ old_embeddings.weight.data
821
+ )
822
+
823
+ self.pico_decoder.embedding_proj = new_embeddings
824
+ self.pico_decoder.de_embedding_proj = torch.nn.Linear(
825
+ old_embeddings.embedding_dim, new_num_tokens, bias=False
826
+ )
827
+
828
+ return new_embeddings
829
+
830
+ @classmethod
831
+ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
832
+ """
833
+ Load a pretrained model from a checkpoint.
834
+
835
+ This method handles loading from both the old PicoDecoderHF format and the new format.
836
+ """
837
+ # First try to load with the new class
838
+ try:
839
+ return super().from_pretrained(
840
+ pretrained_model_name_or_path, *model_args, **kwargs
841
+ )
842
+ except Exception as e:
843
+ print(f"Failed to load with new class: {e}")
844
+ print("Attempting to load with legacy class and convert...")
845
+
846
+ # Try to load with the old class and convert
847
+ try:
848
+ from transformers import AutoModel
849
+
850
+ old_model = AutoModel.from_pretrained(
851
+ pretrained_model_name_or_path,
852
+ trust_remote_code=True,
853
+ *model_args,
854
+ **kwargs,
855
+ )
856
+
857
+ # Create new model instance
858
+ new_model = cls(old_model.config)
859
+
860
+ # Copy state dict
861
+ new_model.load_state_dict(old_model.state_dict(), strict=False)
862
+
863
+ return new_model
864
+
865
+ except Exception as e2:
866
+ print(f"Failed to convert from legacy format: {e2}")
867
+ raise e
868
+
869
+
870
+ # Register the new class
871
+ PicoDecoderForCausalLM.register_for_auto_class("AutoModelForCausalLM")
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "pad_token": {
10
+ "content": "<|padding|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
pico-decoder-tiny-dolma29k-v3/checkpoints/step_0/tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "|||IP_ADDRESS|||",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "1": {
15
+ "content": "<|padding|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "50254": {
23
+ "content": " ",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "50255": {
31
+ "content": " ",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "50256": {
39
+ "content": " ",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "50257": {
47
+ "content": " ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "50258": {
55
+ "content": " ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "50259": {
63
+ "content": " ",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "50260": {
71
+ "content": " ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "50261": {
79
+ "content": " ",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "50262": {
87
+ "content": " ",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "50263": {
95
+ "content": " ",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "50264": {
103
+ "content": " ",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "50265": {
111
+ "content": " ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "50266": {
119
+ "content": " ",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "50267": {
127
+ "content": " ",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "50268": {
135
+ "content": " ",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "50269": {
143
+ "content": " ",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "50270": {
151
+ "content": " ",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "50271": {
159
+ "content": " ",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "50272": {
167
+ "content": " ",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "50273": {
175
+ "content": " ",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "50274": {
183
+ "content": " ",
184
+ "lstrip": false,
185
+ "normalized": true,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "50275": {
191
+ "content": " ",
192
+ "lstrip": false,
193
+ "normalized": true,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "50276": {
199
+ "content": " ",
200
+ "lstrip": false,
201
+ "normalized": true,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "50277": {
207
+ "content": "|||EMAIL_ADDRESS|||",
208
+ "lstrip": false,
209
+ "normalized": true,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "50278": {
215
+ "content": "|||PHONE_NUMBER|||",
216
+ "lstrip": false,
217
+ "normalized": true,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "50279": {
223
+ "content": "<|endoftext|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ }
230
+ },
231
+ "bos_token": null,
232
+ "clean_up_tokenization_spaces": true,
233
+ "eos_token": "<|endoftext|>",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 1000000000000000019884624838656,
236
+ "pad_token": "<|padding|>",
237
+ "tokenizer_class": "GPTNeoXTokenizer",
238
+ "unk_token": null
239
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_hidden_dim": 384,
3
+ "architectures": [
4
+ "PicoDecoderHF"
5
+ ],
6
+ "attention_n_heads": 12,
7
+ "attention_n_kv_heads": 4,
8
+ "auto_map": {
9
+ "AutoConfig": "pico_decoder.PicoDecoderHFConfig",
10
+ "AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
11
+ },
12
+ "batch_size": 1024,
13
+ "d_model": 96,
14
+ "max_seq_len": 2048,
15
+ "model_type": "pico_decoder",
16
+ "n_layers": 12,
17
+ "norm_eps": 1e-06,
18
+ "position_emb_theta": 10000.0,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.48.3",
21
+ "vocab_size": 50304
22
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/fabric_state/checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e326f7cbe72d5445aa9bfdc45aca40e1f657ed07235f0eb9b275bc0ab087ccba
3
+ size 135543171
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "transformers_version": "4.48.3",
3
+ "vocab_size": 50304
4
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/learning_dynamics/train_activations.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7566791bcac384369fec016e7b22021f575d48c61df8aad9bfc0329883637de
3
+ size 33819
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/learning_dynamics/train_data/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:908a522ebc31350e7397330dd99c9ad2253e2efdc1bee1ff76f9babef6078d28
3
+ size 66408
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/learning_dynamics/train_data/dataset_info.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "citation": "",
3
+ "description": "",
4
+ "features": {
5
+ "input_ids": {
6
+ "feature": {
7
+ "dtype": "int32",
8
+ "_type": "Value"
9
+ },
10
+ "_type": "Sequence"
11
+ },
12
+ "text": {
13
+ "dtype": "string",
14
+ "_type": "Value"
15
+ }
16
+ },
17
+ "homepage": "",
18
+ "license": ""
19
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/learning_dynamics/train_data/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "86e249409514e027",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": null
13
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/learning_dynamics/train_gradients.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12234bb37aa2ac9eb8693ce81a16a8d95e1988d7f2567b5f4b4f9695cf03d0f0
3
+ size 2371527
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/learning_dynamics/train_weights.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13cdf88a0327e67430f61983d602f9ac270d81dcd369b564f5812dbb7bc5110c
3
+ size 2371443
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4848e10f93dadf3da56a7c3efa1442da9638b6e36824912e61bb2abfd680f188
3
+ size 45143592
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/pico_decoder.py ADDED
@@ -0,0 +1,871 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Pico Decoder: A Lightweight Causal Transformer Language Model
3
+
4
+ Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
5
+
6
+ Everything is written with a modular design for easy modification and experimentation.
7
+
8
+ Key features:
9
+ - RMSNorm for layer normalization
10
+ - Rotary Positional Embeddings (RoPE)
11
+ - Multi-head attention with KV-cache support
12
+ - SwiGLU activation function
13
+ - Residual connections throughout
14
+
15
+ - KV-cache for faster autoregressive generation
16
+
17
+ References:
18
+ - RoPE: https://arxiv.org/abs/2104.09864
19
+ - SwiGLU: https://arxiv.org/abs/2002.05202
20
+ - LLAMA: https://arxiv.org/abs/2302.13971
21
+
22
+ Adapted from:
23
+ - OLMO: https://github.com/allenai/OLMo
24
+ - LLAMA: https://github.com/meta/llama
25
+ """
26
+
27
+ from dataclasses import asdict
28
+ from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
29
+
30
+ import torch
31
+ import torch.nn as nn
32
+ import torch.nn.functional as F
33
+ from torch.nn.attention import SDPBackend, sdpa_kernel
34
+ from transformers import GenerationMixin, PretrainedConfig, PreTrainedModel
35
+ from transformers.generation import GenerationConfig
36
+ from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
37
+
38
+ try:
39
+ if TYPE_CHECKING:
40
+ # We need to do this to avoid importing these when creating the HF-compatible models
41
+ from src.config import ModelConfig
42
+ except ImportError:
43
+ pass
44
+
45
+ ########################################################
46
+ #
47
+ # Layer Normalization
48
+ #
49
+ ########################################################
50
+
51
+
52
+ class RMSNorm(torch.nn.Module):
53
+ """Root Mean Square Layer Normalization.
54
+
55
+ A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
56
+ resulting in improved stability and performance.
57
+
58
+ Args:
59
+ config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
60
+ - config.norm_eps: Small constant for numerical stability
61
+ - config.d_model: Model dimension for the weight parameter
62
+
63
+ References:
64
+ https://arxiv.org/abs/1910.07467
65
+ """
66
+
67
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
68
+ super().__init__()
69
+ self.eps = config.norm_eps
70
+ self.weight = nn.Parameter(torch.ones(config.d_model))
71
+
72
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
73
+ """
74
+ Normalizes the input tensor by its RMS value.
75
+ """
76
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
77
+
78
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
79
+ """
80
+ Applies RMS normalization to the input tensor and scales it by the weight parameter.
81
+ """
82
+ output = self._norm(x.float()).type_as(x)
83
+ return output * self.weight
84
+
85
+
86
+ ########################################################
87
+ #
88
+ # Positional Embedding
89
+ #
90
+ ########################################################
91
+
92
+
93
+ class RoPE(nn.Module):
94
+ """Rotary Positional Embeddings (RoPE).
95
+
96
+ Implements position-dependent rotation of keys and queries in attention mechanism,
97
+ allowing better modeling of relative positions in sequences. Uses complex number
98
+ operations for efficient rotation.
99
+
100
+ Args:
101
+ config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
102
+ - config.position_emb_theta: Base for frequency computation
103
+ - config.d_model: Model dimension
104
+ - config.attention_n_heads: Number of attention heads
105
+ - config.max_seq_len: Maximum sequence length
106
+
107
+ References:
108
+ https://arxiv.org/abs/2104.09864
109
+ """
110
+
111
+ _freqs_cis_tensor: torch.Tensor | None = None
112
+
113
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
114
+ super().__init__()
115
+
116
+ self.theta = config.position_emb_theta
117
+ self.dim = config.d_model // config.attention_n_heads
118
+
119
+ max_seq_len = config.max_seq_len
120
+
121
+ # only gets set once, and then reused for all RoPE instances
122
+ if RoPE._freqs_cis_tensor is None:
123
+ RoPE._freqs_cis_tensor = self._setup_freqs_cis(
124
+ max_seq_len, self.theta, self.dim
125
+ )
126
+
127
+ # register _freqs_cis buffer
128
+ # can be easily recomputed so persistent=False
129
+ self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
130
+
131
+ @classmethod
132
+ def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
133
+ """Setup Frequency Tensor for RoPE Embeddings
134
+
135
+ Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
136
+
137
+ Note other implementations will use cos and sin directly, but using the complex
138
+ number representation is (probably) more efficient:
139
+
140
+ e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
141
+ """
142
+ _freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
143
+ positions = torch.arange(seq_len)
144
+ freqs = torch.outer(positions, _freqs)
145
+ return torch.polar(torch.ones_like(freqs), freqs) # complex64
146
+
147
+ def get_freqs_cis(
148
+ self, input_shape: torch.Size, start_pos: int, end_pos: int
149
+ ) -> torch.Tensor:
150
+ """Reshape Frequency Tensor for RoPE Embeddings
151
+
152
+ Makes the frequency tensor broadcastable with the input tensor.
153
+ """
154
+ _freqs_cis = self._freqs_cis[start_pos:end_pos]
155
+ ndim = len(input_shape)
156
+ assert 0 <= 1 < ndim
157
+ assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
158
+
159
+ # TODO: Check whether this is correct (might be able to remove this)
160
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
161
+ return _freqs_cis.view(*shape)
162
+
163
+ def forward(
164
+ self,
165
+ queries: torch.Tensor,
166
+ keys: torch.Tensor,
167
+ start_pos: int = 0,
168
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
169
+ """Apply RoPE Embeddings to Queries and Keys
170
+
171
+ Applies the rotary positional embeddings to the input tensors via complex num multiplication
172
+
173
+ NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
174
+ """
175
+ queries_ = torch.view_as_complex(
176
+ queries.float().reshape(*queries.shape[:-1], -1, 2)
177
+ )
178
+ keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
179
+
180
+ input_shape = (
181
+ queries_.shape
182
+ ) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
183
+ freqs_start_pos = start_pos
184
+ freqs_end_pos = freqs_start_pos + queries_.shape[1]
185
+
186
+ freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
187
+
188
+ queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
189
+ keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
190
+ return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
191
+
192
+
193
+ ########################################################
194
+ #
195
+ # Attention
196
+ #
197
+ ########################################################
198
+
199
+
200
+ class Attention(nn.Module):
201
+ """Multi-head Attention with Group Query Attention support.
202
+
203
+ Implements scaled dot-product attention and supports:
204
+ - Grouped Query Attention (GQA)
205
+ - Key-Value caching for efficient inference
206
+ - RoPE integration
207
+
208
+ Args:
209
+ config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
210
+ - config.attention_n_heads: Number of attention heads
211
+ - config.attention_n_kv_heads: Number of key/value heads
212
+ - config.d_model: Model dimension
213
+ - config.batch_size: Maximum batch size
214
+ - config.max_seq_len: Maximum sequence length
215
+
216
+ Shape:
217
+ - Input: (batch_size, seq_len, d_model)
218
+ - Output: (batch_size, seq_len, d_model)
219
+ """
220
+
221
+ def __init__(
222
+ self,
223
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
224
+ ):
225
+ super().__init__()
226
+
227
+ self.n_heads = config.attention_n_heads
228
+ self.n_kv_heads = config.attention_n_kv_heads
229
+
230
+ self.batch_size = config.batch_size
231
+ self.max_seq_len = config.max_seq_len
232
+
233
+ d_model = config.d_model
234
+ self.head_dim = d_model // self.n_heads
235
+
236
+ self.n_rep = self.n_heads // self.n_kv_heads
237
+
238
+ self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
239
+ self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
240
+ self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
241
+ self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
242
+
243
+ self.rope = RoPE(config)
244
+
245
+ def forward(
246
+ self,
247
+ input: torch.Tensor,
248
+ mask: Optional[torch.Tensor] = None,
249
+ past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
250
+ use_cache: bool = False,
251
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
252
+ """Forward pass for the attention mechanism.
253
+
254
+ Computes queries, keys, and values for the attention mechanism. Applies rotary positional
255
+ embeddings to the queries and keys, and then computes attention scores and outputs.
256
+
257
+ For an introduction to the attention mechanism, see:
258
+ https://arxiv.org/abs/1706.03762
259
+
260
+ A few things to note:
261
+ - The past_key_values is used to implement the KV cache, which is used to speed up
262
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
263
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
264
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
265
+ its own KV cache - this KV cache is implemented as a tuple.
266
+ """
267
+ bsz, seq_len, _ = input.shape
268
+ _queries, _keys, _values = (
269
+ self.q_proj(input),
270
+ self.k_proj(input),
271
+ self.v_proj(input),
272
+ )
273
+
274
+ # Reshaping for multi-head attention
275
+ queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
276
+ keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
277
+ values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
278
+
279
+ # The start position is used to apply the RoPE embeddings to only the new tokens
280
+ # when using the kv_cache in the attention mechanism.
281
+ # We want to start from the last position in the cache.
282
+ start_pos = past_key_values[0].shape[1] if past_key_values is not None else 0
283
+
284
+ # apply rotary positional embeddings
285
+ queries, keys = self.rope(queries, keys, start_pos)
286
+
287
+ if past_key_values is not None:
288
+ keys = torch.cat([past_key_values[0], keys], dim=1)
289
+ values = torch.cat([past_key_values[1], values], dim=1)
290
+
291
+ if use_cache:
292
+ cached_keys = keys
293
+ cached_values = values
294
+ else:
295
+ cached_keys = None
296
+ cached_values = None
297
+
298
+ queries = queries.transpose(1, 2)
299
+ keys = keys.transpose(1, 2)
300
+ values = values.transpose(1, 2)
301
+
302
+ apply_gqa = self.n_rep > 1
303
+ if apply_gqa and queries.device.type == "mps":
304
+ # NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
305
+ # outside of the kernel to get the same effect.
306
+ # See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
307
+ keys = keys.repeat_interleave(self.n_rep, dim=-3)
308
+ values = values.repeat_interleave(self.n_rep, dim=-3)
309
+ apply_gqa = False
310
+
311
+ backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
312
+
313
+ with sdpa_kernel(backends=backends):
314
+ attn_output = F.scaled_dot_product_attention(
315
+ queries.contiguous(),
316
+ keys.contiguous(),
317
+ values.contiguous(),
318
+ attn_mask=mask.to(queries.dtype) if mask is not None else None,
319
+ enable_gqa=apply_gqa,
320
+ )
321
+
322
+ attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
323
+ output = self.o_proj(attn_output)
324
+
325
+ return output, (cached_keys, cached_values)
326
+
327
+
328
+ ########################################################
329
+ #
330
+ # SwiGLU (Combines MLP and Activation)
331
+ #
332
+ ########################################################
333
+
334
+
335
+ class SwiGLU(nn.Module):
336
+ """SwiGLU Activation Function with Linear Projections.
337
+
338
+ Implements the SwiGLU activation function combined with linear transformations,
339
+ serving as the feed-forward network in transformer blocks.
340
+
341
+ Args:
342
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
343
+ - config.d_model: Model dimension
344
+ - config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
345
+
346
+ References:
347
+ https://arxiv.org/abs/2002.05202
348
+ """
349
+
350
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
351
+ super().__init__()
352
+
353
+ model_dim = config.d_model
354
+ act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
355
+
356
+ self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
357
+ self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
358
+ self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
359
+
360
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
361
+ return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
362
+
363
+
364
+ ########################################################
365
+ #
366
+ # PicoDecoderBlock
367
+ #
368
+ ########################################################
369
+
370
+
371
+ class PicoDecoderBlock(nn.Module):
372
+ """Single Transformer Block with Attention and Feed-forward layers.
373
+
374
+ Implements a standard transformer block with:
375
+ - Multi-head attention with normalization and residual connection
376
+ - SwiGLU feed-forward network with normalization and residual connection
377
+
378
+ Args:
379
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
380
+ a HuggingFace PicoDecoderHFConfig
381
+ """
382
+
383
+ def __init__(
384
+ self,
385
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
386
+ ):
387
+ super().__init__()
388
+
389
+ self.attention = Attention(config)
390
+ self.swiglu = SwiGLU(config)
391
+ self.attention_norm = RMSNorm(config)
392
+ self.swiglu_norm = RMSNorm(config)
393
+
394
+ def forward(
395
+ self,
396
+ input: torch.Tensor,
397
+ mask: Optional[torch.Tensor] = None,
398
+ past_key_values: Optional[Tuple[torch.Tensor]] = None,
399
+ use_cache: bool = False,
400
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
401
+ attention_output, cached_key_values = self.attention(
402
+ self.attention_norm(input),
403
+ mask=mask,
404
+ past_key_values=past_key_values,
405
+ use_cache=use_cache,
406
+ )
407
+ # NOTE: cached_key_values is None if use_cache is False
408
+
409
+ h = input + attention_output
410
+ out = h + self.swiglu(self.swiglu_norm(h))
411
+ return out, cached_key_values
412
+
413
+
414
+ ########################################################
415
+ #
416
+ # Pico Decoder (Causal Transformer Model)
417
+ #
418
+ ########################################################
419
+
420
+
421
+ class PicoDecoder(nn.Module):
422
+ """
423
+ Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
424
+ single autoregressive model.
425
+
426
+ For more information on the model, see the classes for the modules that make up the model.
427
+ """
428
+
429
+ def __init__(
430
+ self,
431
+ model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
432
+ ):
433
+ super().__init__()
434
+ self.config = model_config
435
+
436
+ self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
437
+ self.layers = nn.ModuleList(
438
+ [PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
439
+ )
440
+ self.output_norm = RMSNorm(self.config)
441
+ self.de_embedding_proj = nn.Linear(
442
+ self.config.d_model, self.config.vocab_size, bias=False
443
+ )
444
+
445
+ def convert_to_hf_model(self) -> "PicoDecoderHF":
446
+ """Convert the Lightning model to a HuggingFace model."""
447
+ # Create HF config without fabric-specific settings
448
+ hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
449
+
450
+ # Create new HF model
451
+ hf_model = PicoDecoderHF(hf_config)
452
+
453
+ # Copy state dict, excluding fabric-specific keys
454
+ hf_model.load_state_dict(self.state_dict(prefix="pico_decoder."))
455
+
456
+ return hf_model
457
+
458
+ def forward(
459
+ self,
460
+ input_ids: torch.Tensor,
461
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
462
+ use_cache: bool = False,
463
+ ) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
464
+ """
465
+ This is the forward pass for the entire Pico model. It boils down to:
466
+ - Embedding the input ids
467
+ - Creating a causal mask
468
+ - Processing through the pico layers
469
+ - Projecting the output to logits
470
+
471
+ NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
472
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
473
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
474
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
475
+ its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
476
+ KV caches (so a tuple of tuples).
477
+ """
478
+
479
+ seq_len = input_ids.shape[-1]
480
+ h = self.embedding_proj(input_ids)
481
+
482
+ # Calculate start position from past cached KV pairs. Remember that each layer has its
483
+ # own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
484
+ # correct layer and then for either the keys or values.
485
+ start_pos = 0 if past_key_values is None else past_key_values[0][0].shape[1]
486
+
487
+ # Create causal mask for current sequence
488
+ mask = None
489
+ if seq_len > 1:
490
+ mask = torch.full((seq_len, seq_len), float("-inf"))
491
+ mask = torch.triu(mask, diagonal=1)
492
+
493
+ # If using KV cache, extend mask to cover cached sequence length
494
+ if past_key_values is not None:
495
+ # Add zeros for cached tokens (we can attend to all of them)
496
+ mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
497
+
498
+ mask = mask.to(h.device)
499
+
500
+ # NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
501
+ # in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
502
+ cached_key_values = () if use_cache else None
503
+
504
+ # Process through transformer blocks
505
+ for idx, layer in enumerate(self.layers):
506
+ layer_past_key_values = (
507
+ past_key_values[idx] if past_key_values is not None else None
508
+ )
509
+
510
+ h, layer_cached_key_values = layer(
511
+ h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
512
+ )
513
+
514
+ if use_cache:
515
+ cached_key_values += (layer_cached_key_values,)
516
+
517
+ # Final norm and projection
518
+ h = self.output_norm(h)
519
+ logits = self.de_embedding_proj(h).float()
520
+
521
+ return logits, cached_key_values
522
+
523
+
524
+ ########################################################
525
+ #
526
+ # HuggingFace Wrapper for the Pico Decoder model.
527
+ #
528
+ ########################################################
529
+
530
+
531
+ class PicoDecoderHFConfig(PretrainedConfig):
532
+ """Config class for the Pico Decoder HuggingFace wrapper."""
533
+
534
+ model_type = "pico_decoder"
535
+
536
+ @classmethod
537
+ def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
538
+ """
539
+ Initialize config from a dictionary. Note that no kwargs are passed to the constructor --
540
+ this is because with some kwargs special handling is required and can make this class
541
+ brittle.
542
+ """
543
+ pico_config = cls(**config_dict)
544
+
545
+ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
546
+ unused_kwargs = {
547
+ key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
548
+ }
549
+
550
+ if return_unused_kwargs:
551
+ return pico_config, unused_kwargs
552
+ return pico_config
553
+
554
+ @classmethod
555
+ def from_dataclass(cls, model_config: "ModelConfig"):
556
+ """Initialise from our custom config dataclass."""
557
+ return cls.from_dict(asdict(model_config))
558
+
559
+
560
+ class PicoDecoderHF(PreTrainedModel, GenerationMixin):
561
+ """
562
+ HuggingFace wrapper for the Pico model with generation support.
563
+
564
+ Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
565
+ wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
566
+ Pico model as well as the model wrapped in this HuggingFace class.
567
+
568
+ This also lets you do cool things like:
569
+
570
+ `model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
571
+ """
572
+
573
+ config_class = PicoDecoderHFConfig
574
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
575
+ main_input_name = "input_ids"
576
+
577
+ def __init__(self, config: PicoDecoderHFConfig):
578
+ super().__init__(config)
579
+ self.pico_decoder = PicoDecoder(config)
580
+ # Initialize generation config with defaults
581
+ self.generation_config = GenerationConfig()
582
+ # Set some reasonable defaults for the model
583
+ if hasattr(config, "max_position_embeddings"):
584
+ self.generation_config.max_length = config.max_position_embeddings
585
+ if hasattr(config, "vocab_size"):
586
+ self.generation_config.vocab_size = config.vocab_size
587
+
588
+ def forward(
589
+ self,
590
+ input_ids: torch.Tensor,
591
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
592
+ use_cache: bool = False,
593
+ **kwargs,
594
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
595
+ """HuggingFace forward pass wrapper.
596
+
597
+ Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
598
+ Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
599
+ """
600
+ logits, past_key_values = self.pico_decoder(
601
+ input_ids, past_key_values, use_cache
602
+ )
603
+ if use_cache:
604
+ return CausalLMOutputWithPast(
605
+ logits=logits,
606
+ past_key_values=past_key_values,
607
+ )
608
+ else:
609
+ return CausalLMOutput(
610
+ logits=logits,
611
+ )
612
+
613
+ def prepare_inputs_for_generation(
614
+ self,
615
+ input_ids: torch.LongTensor,
616
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
617
+ attention_mask: Optional[torch.LongTensor] = None,
618
+ **kwargs,
619
+ ) -> Dict[str, Any]:
620
+ """
621
+ Prepare inputs for generation.
622
+
623
+ Args:
624
+ input_ids: Input token IDs
625
+ past_key_values: Cached key-value pairs from previous forward passes
626
+ attention_mask: Attention mask for the input
627
+ **kwargs: Additional arguments
628
+
629
+ Returns:
630
+ Dictionary containing prepared inputs
631
+ """
632
+ # If we have past_key_values, we only need the last token
633
+ if past_key_values is not None:
634
+ input_ids = input_ids[:, -1:]
635
+
636
+ return {
637
+ "input_ids": input_ids,
638
+ "past_key_values": past_key_values,
639
+ "use_cache": True,
640
+ }
641
+
642
+ def get_input_embeddings(self):
643
+ """Get the input embeddings layer."""
644
+ return self.pico_decoder.embedding_proj
645
+
646
+ def set_input_embeddings(self, value):
647
+ """Set the input embeddings layer."""
648
+ self.pico_decoder.embedding_proj = value
649
+
650
+ def get_output_embeddings(self):
651
+ """Get the output embeddings layer."""
652
+ return self.pico_decoder.de_embedding_proj
653
+
654
+ def set_output_embeddings(self, value):
655
+ """Set the output embeddings layer."""
656
+ self.pico_decoder.de_embedding_proj = value
657
+
658
+ def get_lm_head(self):
659
+ """Get the language model head."""
660
+ return self.pico_decoder.de_embedding_proj
661
+
662
+ def can_generate(self) -> bool:
663
+ """Check if the model can generate text."""
664
+ return True
665
+
666
+ @property
667
+ def is_encoder_decoder(self) -> bool:
668
+ """Check if the model is an encoder-decoder model."""
669
+ return False
670
+
671
+ @property
672
+ def can_use_cache(self) -> bool:
673
+ """Check if the model can use KV cache."""
674
+ return True
675
+
676
+ def resize_token_embeddings(
677
+ self, new_num_tokens: Optional[int] = None
678
+ ) -> torch.nn.Embedding:
679
+ """Resize token embeddings."""
680
+ old_embeddings = self.get_input_embeddings()
681
+ if new_num_tokens is None:
682
+ new_num_tokens = old_embeddings.num_embeddings
683
+
684
+ new_embeddings = torch.nn.Embedding(
685
+ new_num_tokens, old_embeddings.embedding_dim
686
+ )
687
+ new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
688
+ old_embeddings.weight.data
689
+ )
690
+
691
+ self.pico_decoder.embedding_proj = new_embeddings
692
+ self.pico_decoder.de_embedding_proj = torch.nn.Linear(
693
+ old_embeddings.embedding_dim, new_num_tokens, bias=False
694
+ )
695
+
696
+ return new_embeddings
697
+
698
+
699
+ # Register for auto classes
700
+ PicoDecoderHFConfig.register_for_auto_class()
701
+ PicoDecoderHF.register_for_auto_class("AutoModel")
702
+ PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
703
+
704
+
705
+ ########################################################
706
+ #
707
+ # New PicoDecoderForCausalLM class for generation support
708
+ #
709
+ ########################################################
710
+
711
+
712
+ class PicoDecoderForCausalLM(PreTrainedModel, GenerationMixin):
713
+ """
714
+ PicoDecoderForCausalLM: A HuggingFace-compatible model that properly supports generation.
715
+
716
+ This class is designed to work with existing checkpoints and provides full generation support.
717
+ It inherits from the right base classes that HuggingFace expects for text generation.
718
+ """
719
+
720
+ config_class = PicoDecoderHFConfig
721
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
722
+ main_input_name = "input_ids"
723
+
724
+ def __init__(self, config: PicoDecoderHFConfig):
725
+ super().__init__(config)
726
+ self.pico_decoder = PicoDecoder(config)
727
+ # Initialize generation config with defaults
728
+ self.generation_config = GenerationConfig()
729
+ # Set some reasonable defaults for the model
730
+ if hasattr(config, "max_position_embeddings"):
731
+ self.generation_config.max_length = config.max_position_embeddings
732
+ if hasattr(config, "vocab_size"):
733
+ self.generation_config.vocab_size = config.vocab_size
734
+
735
+ def forward(
736
+ self,
737
+ input_ids: torch.Tensor,
738
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
739
+ use_cache: bool = False,
740
+ **kwargs,
741
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
742
+ """Forward pass for text generation."""
743
+ logits, past_key_values = self.pico_decoder(
744
+ input_ids, past_key_values, use_cache
745
+ )
746
+ if use_cache:
747
+ return CausalLMOutputWithPast(
748
+ logits=logits,
749
+ past_key_values=past_key_values,
750
+ )
751
+ else:
752
+ return CausalLMOutput(
753
+ logits=logits,
754
+ )
755
+
756
+ def prepare_inputs_for_generation(
757
+ self,
758
+ input_ids: torch.LongTensor,
759
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
760
+ attention_mask: Optional[torch.LongTensor] = None,
761
+ **kwargs,
762
+ ) -> Dict[str, Any]:
763
+ """Prepare inputs for generation."""
764
+ # If we have past_key_values, we only need the last token
765
+ if past_key_values is not None:
766
+ input_ids = input_ids[:, -1:]
767
+
768
+ return {
769
+ "input_ids": input_ids,
770
+ "past_key_values": past_key_values,
771
+ "use_cache": True,
772
+ }
773
+
774
+ def get_input_embeddings(self):
775
+ """Get the input embeddings layer."""
776
+ return self.pico_decoder.embedding_proj
777
+
778
+ def set_input_embeddings(self, value):
779
+ """Set the input embeddings layer."""
780
+ self.pico_decoder.embedding_proj = value
781
+
782
+ def get_output_embeddings(self):
783
+ """Get the output embeddings layer."""
784
+ return self.pico_decoder.de_embedding_proj
785
+
786
+ def set_output_embeddings(self, value):
787
+ """Set the output embeddings layer."""
788
+ self.pico_decoder.de_embedding_proj = value
789
+
790
+ def get_lm_head(self):
791
+ """Get the language model head."""
792
+ return self.pico_decoder.de_embedding_proj
793
+
794
+ def can_generate(self) -> bool:
795
+ """Check if the model can generate text."""
796
+ return True
797
+
798
+ @property
799
+ def is_encoder_decoder(self) -> bool:
800
+ """Check if the model is an encoder-decoder model."""
801
+ return False
802
+
803
+ @property
804
+ def can_use_cache(self) -> bool:
805
+ """Check if the model can use KV cache."""
806
+ return True
807
+
808
+ def resize_token_embeddings(
809
+ self, new_num_tokens: Optional[int] = None
810
+ ) -> torch.nn.Embedding:
811
+ """Resize token embeddings."""
812
+ old_embeddings = self.get_input_embeddings()
813
+ if new_num_tokens is None:
814
+ new_num_tokens = old_embeddings.num_embeddings
815
+
816
+ new_embeddings = torch.nn.Embedding(
817
+ new_num_tokens, old_embeddings.embedding_dim
818
+ )
819
+ new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
820
+ old_embeddings.weight.data
821
+ )
822
+
823
+ self.pico_decoder.embedding_proj = new_embeddings
824
+ self.pico_decoder.de_embedding_proj = torch.nn.Linear(
825
+ old_embeddings.embedding_dim, new_num_tokens, bias=False
826
+ )
827
+
828
+ return new_embeddings
829
+
830
+ @classmethod
831
+ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
832
+ """
833
+ Load a pretrained model from a checkpoint.
834
+
835
+ This method handles loading from both the old PicoDecoderHF format and the new format.
836
+ """
837
+ # First try to load with the new class
838
+ try:
839
+ return super().from_pretrained(
840
+ pretrained_model_name_or_path, *model_args, **kwargs
841
+ )
842
+ except Exception as e:
843
+ print(f"Failed to load with new class: {e}")
844
+ print("Attempting to load with legacy class and convert...")
845
+
846
+ # Try to load with the old class and convert
847
+ try:
848
+ from transformers import AutoModel
849
+
850
+ old_model = AutoModel.from_pretrained(
851
+ pretrained_model_name_or_path,
852
+ trust_remote_code=True,
853
+ *model_args,
854
+ **kwargs,
855
+ )
856
+
857
+ # Create new model instance
858
+ new_model = cls(old_model.config)
859
+
860
+ # Copy state dict
861
+ new_model.load_state_dict(old_model.state_dict(), strict=False)
862
+
863
+ return new_model
864
+
865
+ except Exception as e2:
866
+ print(f"Failed to convert from legacy format: {e2}")
867
+ raise e
868
+
869
+
870
+ # Register the new class
871
+ PicoDecoderForCausalLM.register_for_auto_class("AutoModelForCausalLM")
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "pad_token": {
10
+ "content": "<|padding|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
pico-decoder-tiny-dolma29k-v3/checkpoints/step_1000/tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "|||IP_ADDRESS|||",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "1": {
15
+ "content": "<|padding|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "50254": {
23
+ "content": " ",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "50255": {
31
+ "content": " ",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "50256": {
39
+ "content": " ",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "50257": {
47
+ "content": " ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "50258": {
55
+ "content": " ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "50259": {
63
+ "content": " ",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "50260": {
71
+ "content": " ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "50261": {
79
+ "content": " ",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "50262": {
87
+ "content": " ",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "50263": {
95
+ "content": " ",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "50264": {
103
+ "content": " ",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "50265": {
111
+ "content": " ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "50266": {
119
+ "content": " ",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "50267": {
127
+ "content": " ",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "50268": {
135
+ "content": " ",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "50269": {
143
+ "content": " ",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "50270": {
151
+ "content": " ",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "50271": {
159
+ "content": " ",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "50272": {
167
+ "content": " ",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "50273": {
175
+ "content": " ",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "50274": {
183
+ "content": " ",
184
+ "lstrip": false,
185
+ "normalized": true,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "50275": {
191
+ "content": " ",
192
+ "lstrip": false,
193
+ "normalized": true,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "50276": {
199
+ "content": " ",
200
+ "lstrip": false,
201
+ "normalized": true,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "50277": {
207
+ "content": "|||EMAIL_ADDRESS|||",
208
+ "lstrip": false,
209
+ "normalized": true,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "50278": {
215
+ "content": "|||PHONE_NUMBER|||",
216
+ "lstrip": false,
217
+ "normalized": true,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "50279": {
223
+ "content": "<|endoftext|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ }
230
+ },
231
+ "bos_token": null,
232
+ "clean_up_tokenization_spaces": true,
233
+ "eos_token": "<|endoftext|>",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 1000000000000000019884624838656,
236
+ "pad_token": "<|padding|>",
237
+ "tokenizer_class": "GPTNeoXTokenizer",
238
+ "unk_token": null
239
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_hidden_dim": 384,
3
+ "architectures": [
4
+ "PicoDecoderHF"
5
+ ],
6
+ "attention_n_heads": 12,
7
+ "attention_n_kv_heads": 4,
8
+ "auto_map": {
9
+ "AutoConfig": "pico_decoder.PicoDecoderHFConfig",
10
+ "AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
11
+ },
12
+ "batch_size": 1024,
13
+ "d_model": 96,
14
+ "max_seq_len": 2048,
15
+ "model_type": "pico_decoder",
16
+ "n_layers": 12,
17
+ "norm_eps": 1e-06,
18
+ "position_emb_theta": 10000.0,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.48.3",
21
+ "vocab_size": 50304
22
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/fabric_state/checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:081a685b017bb9211c9800b4510b49be6632eb3a5890e291553048a47518b61f
3
+ size 135543171
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "transformers_version": "4.48.3",
3
+ "vocab_size": 50304
4
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/learning_dynamics/train_activations.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e27c89055a7cf7ee67b27234c42ffa2929725acc25dbf7a300572c8e08182f2b
3
+ size 33819
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/learning_dynamics/train_data/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e764f67fb43f87a6ce2fc55e5f3b2e644ca59fc31a7018f0846433c719611c4c
3
+ size 67808
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/learning_dynamics/train_data/dataset_info.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "citation": "",
3
+ "description": "",
4
+ "features": {
5
+ "input_ids": {
6
+ "feature": {
7
+ "dtype": "int32",
8
+ "_type": "Value"
9
+ },
10
+ "_type": "Sequence"
11
+ },
12
+ "text": {
13
+ "dtype": "string",
14
+ "_type": "Value"
15
+ }
16
+ },
17
+ "homepage": "",
18
+ "license": ""
19
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/learning_dynamics/train_data/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "cd469f698bb3f53d",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": null
13
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/learning_dynamics/train_gradients.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:135aaa9b2175114eb2aea7678c06a1a76e4e60270aa3962302152a80214ba0fd
3
+ size 2371527
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/learning_dynamics/train_weights.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2704502d9c1e4be0216d6d6a9a7023a0c99f0828937f30039b51d01f71e4ae51
3
+ size 2371443
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:256a0ad7133842f59272504acb05ebedeee55a6bd1a125ddfb49c2c2dd4a51b9
3
+ size 45143592
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/pico_decoder.py ADDED
@@ -0,0 +1,871 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Pico Decoder: A Lightweight Causal Transformer Language Model
3
+
4
+ Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
5
+
6
+ Everything is written with a modular design for easy modification and experimentation.
7
+
8
+ Key features:
9
+ - RMSNorm for layer normalization
10
+ - Rotary Positional Embeddings (RoPE)
11
+ - Multi-head attention with KV-cache support
12
+ - SwiGLU activation function
13
+ - Residual connections throughout
14
+
15
+ - KV-cache for faster autoregressive generation
16
+
17
+ References:
18
+ - RoPE: https://arxiv.org/abs/2104.09864
19
+ - SwiGLU: https://arxiv.org/abs/2002.05202
20
+ - LLAMA: https://arxiv.org/abs/2302.13971
21
+
22
+ Adapted from:
23
+ - OLMO: https://github.com/allenai/OLMo
24
+ - LLAMA: https://github.com/meta/llama
25
+ """
26
+
27
+ from dataclasses import asdict
28
+ from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
29
+
30
+ import torch
31
+ import torch.nn as nn
32
+ import torch.nn.functional as F
33
+ from torch.nn.attention import SDPBackend, sdpa_kernel
34
+ from transformers import GenerationMixin, PretrainedConfig, PreTrainedModel
35
+ from transformers.generation import GenerationConfig
36
+ from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
37
+
38
+ try:
39
+ if TYPE_CHECKING:
40
+ # We need to do this to avoid importing these when creating the HF-compatible models
41
+ from src.config import ModelConfig
42
+ except ImportError:
43
+ pass
44
+
45
+ ########################################################
46
+ #
47
+ # Layer Normalization
48
+ #
49
+ ########################################################
50
+
51
+
52
+ class RMSNorm(torch.nn.Module):
53
+ """Root Mean Square Layer Normalization.
54
+
55
+ A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
56
+ resulting in improved stability and performance.
57
+
58
+ Args:
59
+ config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
60
+ - config.norm_eps: Small constant for numerical stability
61
+ - config.d_model: Model dimension for the weight parameter
62
+
63
+ References:
64
+ https://arxiv.org/abs/1910.07467
65
+ """
66
+
67
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
68
+ super().__init__()
69
+ self.eps = config.norm_eps
70
+ self.weight = nn.Parameter(torch.ones(config.d_model))
71
+
72
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
73
+ """
74
+ Normalizes the input tensor by its RMS value.
75
+ """
76
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
77
+
78
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
79
+ """
80
+ Applies RMS normalization to the input tensor and scales it by the weight parameter.
81
+ """
82
+ output = self._norm(x.float()).type_as(x)
83
+ return output * self.weight
84
+
85
+
86
+ ########################################################
87
+ #
88
+ # Positional Embedding
89
+ #
90
+ ########################################################
91
+
92
+
93
+ class RoPE(nn.Module):
94
+ """Rotary Positional Embeddings (RoPE).
95
+
96
+ Implements position-dependent rotation of keys and queries in attention mechanism,
97
+ allowing better modeling of relative positions in sequences. Uses complex number
98
+ operations for efficient rotation.
99
+
100
+ Args:
101
+ config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
102
+ - config.position_emb_theta: Base for frequency computation
103
+ - config.d_model: Model dimension
104
+ - config.attention_n_heads: Number of attention heads
105
+ - config.max_seq_len: Maximum sequence length
106
+
107
+ References:
108
+ https://arxiv.org/abs/2104.09864
109
+ """
110
+
111
+ _freqs_cis_tensor: torch.Tensor | None = None
112
+
113
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
114
+ super().__init__()
115
+
116
+ self.theta = config.position_emb_theta
117
+ self.dim = config.d_model // config.attention_n_heads
118
+
119
+ max_seq_len = config.max_seq_len
120
+
121
+ # only gets set once, and then reused for all RoPE instances
122
+ if RoPE._freqs_cis_tensor is None:
123
+ RoPE._freqs_cis_tensor = self._setup_freqs_cis(
124
+ max_seq_len, self.theta, self.dim
125
+ )
126
+
127
+ # register _freqs_cis buffer
128
+ # can be easily recomputed so persistent=False
129
+ self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
130
+
131
+ @classmethod
132
+ def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
133
+ """Setup Frequency Tensor for RoPE Embeddings
134
+
135
+ Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
136
+
137
+ Note other implementations will use cos and sin directly, but using the complex
138
+ number representation is (probably) more efficient:
139
+
140
+ e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
141
+ """
142
+ _freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
143
+ positions = torch.arange(seq_len)
144
+ freqs = torch.outer(positions, _freqs)
145
+ return torch.polar(torch.ones_like(freqs), freqs) # complex64
146
+
147
+ def get_freqs_cis(
148
+ self, input_shape: torch.Size, start_pos: int, end_pos: int
149
+ ) -> torch.Tensor:
150
+ """Reshape Frequency Tensor for RoPE Embeddings
151
+
152
+ Makes the frequency tensor broadcastable with the input tensor.
153
+ """
154
+ _freqs_cis = self._freqs_cis[start_pos:end_pos]
155
+ ndim = len(input_shape)
156
+ assert 0 <= 1 < ndim
157
+ assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
158
+
159
+ # TODO: Check whether this is correct (might be able to remove this)
160
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
161
+ return _freqs_cis.view(*shape)
162
+
163
+ def forward(
164
+ self,
165
+ queries: torch.Tensor,
166
+ keys: torch.Tensor,
167
+ start_pos: int = 0,
168
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
169
+ """Apply RoPE Embeddings to Queries and Keys
170
+
171
+ Applies the rotary positional embeddings to the input tensors via complex num multiplication
172
+
173
+ NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
174
+ """
175
+ queries_ = torch.view_as_complex(
176
+ queries.float().reshape(*queries.shape[:-1], -1, 2)
177
+ )
178
+ keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
179
+
180
+ input_shape = (
181
+ queries_.shape
182
+ ) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
183
+ freqs_start_pos = start_pos
184
+ freqs_end_pos = freqs_start_pos + queries_.shape[1]
185
+
186
+ freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
187
+
188
+ queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
189
+ keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
190
+ return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
191
+
192
+
193
+ ########################################################
194
+ #
195
+ # Attention
196
+ #
197
+ ########################################################
198
+
199
+
200
+ class Attention(nn.Module):
201
+ """Multi-head Attention with Group Query Attention support.
202
+
203
+ Implements scaled dot-product attention and supports:
204
+ - Grouped Query Attention (GQA)
205
+ - Key-Value caching for efficient inference
206
+ - RoPE integration
207
+
208
+ Args:
209
+ config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
210
+ - config.attention_n_heads: Number of attention heads
211
+ - config.attention_n_kv_heads: Number of key/value heads
212
+ - config.d_model: Model dimension
213
+ - config.batch_size: Maximum batch size
214
+ - config.max_seq_len: Maximum sequence length
215
+
216
+ Shape:
217
+ - Input: (batch_size, seq_len, d_model)
218
+ - Output: (batch_size, seq_len, d_model)
219
+ """
220
+
221
+ def __init__(
222
+ self,
223
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
224
+ ):
225
+ super().__init__()
226
+
227
+ self.n_heads = config.attention_n_heads
228
+ self.n_kv_heads = config.attention_n_kv_heads
229
+
230
+ self.batch_size = config.batch_size
231
+ self.max_seq_len = config.max_seq_len
232
+
233
+ d_model = config.d_model
234
+ self.head_dim = d_model // self.n_heads
235
+
236
+ self.n_rep = self.n_heads // self.n_kv_heads
237
+
238
+ self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
239
+ self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
240
+ self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
241
+ self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
242
+
243
+ self.rope = RoPE(config)
244
+
245
+ def forward(
246
+ self,
247
+ input: torch.Tensor,
248
+ mask: Optional[torch.Tensor] = None,
249
+ past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
250
+ use_cache: bool = False,
251
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
252
+ """Forward pass for the attention mechanism.
253
+
254
+ Computes queries, keys, and values for the attention mechanism. Applies rotary positional
255
+ embeddings to the queries and keys, and then computes attention scores and outputs.
256
+
257
+ For an introduction to the attention mechanism, see:
258
+ https://arxiv.org/abs/1706.03762
259
+
260
+ A few things to note:
261
+ - The past_key_values is used to implement the KV cache, which is used to speed up
262
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
263
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
264
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
265
+ its own KV cache - this KV cache is implemented as a tuple.
266
+ """
267
+ bsz, seq_len, _ = input.shape
268
+ _queries, _keys, _values = (
269
+ self.q_proj(input),
270
+ self.k_proj(input),
271
+ self.v_proj(input),
272
+ )
273
+
274
+ # Reshaping for multi-head attention
275
+ queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
276
+ keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
277
+ values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
278
+
279
+ # The start position is used to apply the RoPE embeddings to only the new tokens
280
+ # when using the kv_cache in the attention mechanism.
281
+ # We want to start from the last position in the cache.
282
+ start_pos = past_key_values[0].shape[1] if past_key_values is not None else 0
283
+
284
+ # apply rotary positional embeddings
285
+ queries, keys = self.rope(queries, keys, start_pos)
286
+
287
+ if past_key_values is not None:
288
+ keys = torch.cat([past_key_values[0], keys], dim=1)
289
+ values = torch.cat([past_key_values[1], values], dim=1)
290
+
291
+ if use_cache:
292
+ cached_keys = keys
293
+ cached_values = values
294
+ else:
295
+ cached_keys = None
296
+ cached_values = None
297
+
298
+ queries = queries.transpose(1, 2)
299
+ keys = keys.transpose(1, 2)
300
+ values = values.transpose(1, 2)
301
+
302
+ apply_gqa = self.n_rep > 1
303
+ if apply_gqa and queries.device.type == "mps":
304
+ # NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
305
+ # outside of the kernel to get the same effect.
306
+ # See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
307
+ keys = keys.repeat_interleave(self.n_rep, dim=-3)
308
+ values = values.repeat_interleave(self.n_rep, dim=-3)
309
+ apply_gqa = False
310
+
311
+ backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
312
+
313
+ with sdpa_kernel(backends=backends):
314
+ attn_output = F.scaled_dot_product_attention(
315
+ queries.contiguous(),
316
+ keys.contiguous(),
317
+ values.contiguous(),
318
+ attn_mask=mask.to(queries.dtype) if mask is not None else None,
319
+ enable_gqa=apply_gqa,
320
+ )
321
+
322
+ attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
323
+ output = self.o_proj(attn_output)
324
+
325
+ return output, (cached_keys, cached_values)
326
+
327
+
328
+ ########################################################
329
+ #
330
+ # SwiGLU (Combines MLP and Activation)
331
+ #
332
+ ########################################################
333
+
334
+
335
+ class SwiGLU(nn.Module):
336
+ """SwiGLU Activation Function with Linear Projections.
337
+
338
+ Implements the SwiGLU activation function combined with linear transformations,
339
+ serving as the feed-forward network in transformer blocks.
340
+
341
+ Args:
342
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
343
+ - config.d_model: Model dimension
344
+ - config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
345
+
346
+ References:
347
+ https://arxiv.org/abs/2002.05202
348
+ """
349
+
350
+ def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
351
+ super().__init__()
352
+
353
+ model_dim = config.d_model
354
+ act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
355
+
356
+ self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
357
+ self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
358
+ self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
359
+
360
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
361
+ return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
362
+
363
+
364
+ ########################################################
365
+ #
366
+ # PicoDecoderBlock
367
+ #
368
+ ########################################################
369
+
370
+
371
+ class PicoDecoderBlock(nn.Module):
372
+ """Single Transformer Block with Attention and Feed-forward layers.
373
+
374
+ Implements a standard transformer block with:
375
+ - Multi-head attention with normalization and residual connection
376
+ - SwiGLU feed-forward network with normalization and residual connection
377
+
378
+ Args:
379
+ config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
380
+ a HuggingFace PicoDecoderHFConfig
381
+ """
382
+
383
+ def __init__(
384
+ self,
385
+ config: Union["ModelConfig", "PicoDecoderHFConfig"],
386
+ ):
387
+ super().__init__()
388
+
389
+ self.attention = Attention(config)
390
+ self.swiglu = SwiGLU(config)
391
+ self.attention_norm = RMSNorm(config)
392
+ self.swiglu_norm = RMSNorm(config)
393
+
394
+ def forward(
395
+ self,
396
+ input: torch.Tensor,
397
+ mask: Optional[torch.Tensor] = None,
398
+ past_key_values: Optional[Tuple[torch.Tensor]] = None,
399
+ use_cache: bool = False,
400
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
401
+ attention_output, cached_key_values = self.attention(
402
+ self.attention_norm(input),
403
+ mask=mask,
404
+ past_key_values=past_key_values,
405
+ use_cache=use_cache,
406
+ )
407
+ # NOTE: cached_key_values is None if use_cache is False
408
+
409
+ h = input + attention_output
410
+ out = h + self.swiglu(self.swiglu_norm(h))
411
+ return out, cached_key_values
412
+
413
+
414
+ ########################################################
415
+ #
416
+ # Pico Decoder (Causal Transformer Model)
417
+ #
418
+ ########################################################
419
+
420
+
421
+ class PicoDecoder(nn.Module):
422
+ """
423
+ Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
424
+ single autoregressive model.
425
+
426
+ For more information on the model, see the classes for the modules that make up the model.
427
+ """
428
+
429
+ def __init__(
430
+ self,
431
+ model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
432
+ ):
433
+ super().__init__()
434
+ self.config = model_config
435
+
436
+ self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
437
+ self.layers = nn.ModuleList(
438
+ [PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
439
+ )
440
+ self.output_norm = RMSNorm(self.config)
441
+ self.de_embedding_proj = nn.Linear(
442
+ self.config.d_model, self.config.vocab_size, bias=False
443
+ )
444
+
445
+ def convert_to_hf_model(self) -> "PicoDecoderHF":
446
+ """Convert the Lightning model to a HuggingFace model."""
447
+ # Create HF config without fabric-specific settings
448
+ hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
449
+
450
+ # Create new HF model
451
+ hf_model = PicoDecoderHF(hf_config)
452
+
453
+ # Copy state dict, excluding fabric-specific keys
454
+ hf_model.load_state_dict(self.state_dict(prefix="pico_decoder."))
455
+
456
+ return hf_model
457
+
458
+ def forward(
459
+ self,
460
+ input_ids: torch.Tensor,
461
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
462
+ use_cache: bool = False,
463
+ ) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
464
+ """
465
+ This is the forward pass for the entire Pico model. It boils down to:
466
+ - Embedding the input ids
467
+ - Creating a causal mask
468
+ - Processing through the pico layers
469
+ - Projecting the output to logits
470
+
471
+ NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
472
+ generation by caching the KV pairs from previous forward passes. This is useful when doing
473
+ tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
474
+ modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
475
+ its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
476
+ KV caches (so a tuple of tuples).
477
+ """
478
+
479
+ seq_len = input_ids.shape[-1]
480
+ h = self.embedding_proj(input_ids)
481
+
482
+ # Calculate start position from past cached KV pairs. Remember that each layer has its
483
+ # own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
484
+ # correct layer and then for either the keys or values.
485
+ start_pos = 0 if past_key_values is None else past_key_values[0][0].shape[1]
486
+
487
+ # Create causal mask for current sequence
488
+ mask = None
489
+ if seq_len > 1:
490
+ mask = torch.full((seq_len, seq_len), float("-inf"))
491
+ mask = torch.triu(mask, diagonal=1)
492
+
493
+ # If using KV cache, extend mask to cover cached sequence length
494
+ if past_key_values is not None:
495
+ # Add zeros for cached tokens (we can attend to all of them)
496
+ mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
497
+
498
+ mask = mask.to(h.device)
499
+
500
+ # NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
501
+ # in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
502
+ cached_key_values = () if use_cache else None
503
+
504
+ # Process through transformer blocks
505
+ for idx, layer in enumerate(self.layers):
506
+ layer_past_key_values = (
507
+ past_key_values[idx] if past_key_values is not None else None
508
+ )
509
+
510
+ h, layer_cached_key_values = layer(
511
+ h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
512
+ )
513
+
514
+ if use_cache:
515
+ cached_key_values += (layer_cached_key_values,)
516
+
517
+ # Final norm and projection
518
+ h = self.output_norm(h)
519
+ logits = self.de_embedding_proj(h).float()
520
+
521
+ return logits, cached_key_values
522
+
523
+
524
+ ########################################################
525
+ #
526
+ # HuggingFace Wrapper for the Pico Decoder model.
527
+ #
528
+ ########################################################
529
+
530
+
531
+ class PicoDecoderHFConfig(PretrainedConfig):
532
+ """Config class for the Pico Decoder HuggingFace wrapper."""
533
+
534
+ model_type = "pico_decoder"
535
+
536
+ @classmethod
537
+ def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
538
+ """
539
+ Initialize config from a dictionary. Note that no kwargs are passed to the constructor --
540
+ this is because with some kwargs special handling is required and can make this class
541
+ brittle.
542
+ """
543
+ pico_config = cls(**config_dict)
544
+
545
+ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
546
+ unused_kwargs = {
547
+ key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
548
+ }
549
+
550
+ if return_unused_kwargs:
551
+ return pico_config, unused_kwargs
552
+ return pico_config
553
+
554
+ @classmethod
555
+ def from_dataclass(cls, model_config: "ModelConfig"):
556
+ """Initialise from our custom config dataclass."""
557
+ return cls.from_dict(asdict(model_config))
558
+
559
+
560
+ class PicoDecoderHF(PreTrainedModel, GenerationMixin):
561
+ """
562
+ HuggingFace wrapper for the Pico model with generation support.
563
+
564
+ Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
565
+ wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
566
+ Pico model as well as the model wrapped in this HuggingFace class.
567
+
568
+ This also lets you do cool things like:
569
+
570
+ `model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
571
+ """
572
+
573
+ config_class = PicoDecoderHFConfig
574
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
575
+ main_input_name = "input_ids"
576
+
577
+ def __init__(self, config: PicoDecoderHFConfig):
578
+ super().__init__(config)
579
+ self.pico_decoder = PicoDecoder(config)
580
+ # Initialize generation config with defaults
581
+ self.generation_config = GenerationConfig()
582
+ # Set some reasonable defaults for the model
583
+ if hasattr(config, "max_position_embeddings"):
584
+ self.generation_config.max_length = config.max_position_embeddings
585
+ if hasattr(config, "vocab_size"):
586
+ self.generation_config.vocab_size = config.vocab_size
587
+
588
+ def forward(
589
+ self,
590
+ input_ids: torch.Tensor,
591
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
592
+ use_cache: bool = False,
593
+ **kwargs,
594
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
595
+ """HuggingFace forward pass wrapper.
596
+
597
+ Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
598
+ Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
599
+ """
600
+ logits, past_key_values = self.pico_decoder(
601
+ input_ids, past_key_values, use_cache
602
+ )
603
+ if use_cache:
604
+ return CausalLMOutputWithPast(
605
+ logits=logits,
606
+ past_key_values=past_key_values,
607
+ )
608
+ else:
609
+ return CausalLMOutput(
610
+ logits=logits,
611
+ )
612
+
613
+ def prepare_inputs_for_generation(
614
+ self,
615
+ input_ids: torch.LongTensor,
616
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
617
+ attention_mask: Optional[torch.LongTensor] = None,
618
+ **kwargs,
619
+ ) -> Dict[str, Any]:
620
+ """
621
+ Prepare inputs for generation.
622
+
623
+ Args:
624
+ input_ids: Input token IDs
625
+ past_key_values: Cached key-value pairs from previous forward passes
626
+ attention_mask: Attention mask for the input
627
+ **kwargs: Additional arguments
628
+
629
+ Returns:
630
+ Dictionary containing prepared inputs
631
+ """
632
+ # If we have past_key_values, we only need the last token
633
+ if past_key_values is not None:
634
+ input_ids = input_ids[:, -1:]
635
+
636
+ return {
637
+ "input_ids": input_ids,
638
+ "past_key_values": past_key_values,
639
+ "use_cache": True,
640
+ }
641
+
642
+ def get_input_embeddings(self):
643
+ """Get the input embeddings layer."""
644
+ return self.pico_decoder.embedding_proj
645
+
646
+ def set_input_embeddings(self, value):
647
+ """Set the input embeddings layer."""
648
+ self.pico_decoder.embedding_proj = value
649
+
650
+ def get_output_embeddings(self):
651
+ """Get the output embeddings layer."""
652
+ return self.pico_decoder.de_embedding_proj
653
+
654
+ def set_output_embeddings(self, value):
655
+ """Set the output embeddings layer."""
656
+ self.pico_decoder.de_embedding_proj = value
657
+
658
+ def get_lm_head(self):
659
+ """Get the language model head."""
660
+ return self.pico_decoder.de_embedding_proj
661
+
662
+ def can_generate(self) -> bool:
663
+ """Check if the model can generate text."""
664
+ return True
665
+
666
+ @property
667
+ def is_encoder_decoder(self) -> bool:
668
+ """Check if the model is an encoder-decoder model."""
669
+ return False
670
+
671
+ @property
672
+ def can_use_cache(self) -> bool:
673
+ """Check if the model can use KV cache."""
674
+ return True
675
+
676
+ def resize_token_embeddings(
677
+ self, new_num_tokens: Optional[int] = None
678
+ ) -> torch.nn.Embedding:
679
+ """Resize token embeddings."""
680
+ old_embeddings = self.get_input_embeddings()
681
+ if new_num_tokens is None:
682
+ new_num_tokens = old_embeddings.num_embeddings
683
+
684
+ new_embeddings = torch.nn.Embedding(
685
+ new_num_tokens, old_embeddings.embedding_dim
686
+ )
687
+ new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
688
+ old_embeddings.weight.data
689
+ )
690
+
691
+ self.pico_decoder.embedding_proj = new_embeddings
692
+ self.pico_decoder.de_embedding_proj = torch.nn.Linear(
693
+ old_embeddings.embedding_dim, new_num_tokens, bias=False
694
+ )
695
+
696
+ return new_embeddings
697
+
698
+
699
+ # Register for auto classes
700
+ PicoDecoderHFConfig.register_for_auto_class()
701
+ PicoDecoderHF.register_for_auto_class("AutoModel")
702
+ PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
703
+
704
+
705
+ ########################################################
706
+ #
707
+ # New PicoDecoderForCausalLM class for generation support
708
+ #
709
+ ########################################################
710
+
711
+
712
+ class PicoDecoderForCausalLM(PreTrainedModel, GenerationMixin):
713
+ """
714
+ PicoDecoderForCausalLM: A HuggingFace-compatible model that properly supports generation.
715
+
716
+ This class is designed to work with existing checkpoints and provides full generation support.
717
+ It inherits from the right base classes that HuggingFace expects for text generation.
718
+ """
719
+
720
+ config_class = PicoDecoderHFConfig
721
+ _no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
722
+ main_input_name = "input_ids"
723
+
724
+ def __init__(self, config: PicoDecoderHFConfig):
725
+ super().__init__(config)
726
+ self.pico_decoder = PicoDecoder(config)
727
+ # Initialize generation config with defaults
728
+ self.generation_config = GenerationConfig()
729
+ # Set some reasonable defaults for the model
730
+ if hasattr(config, "max_position_embeddings"):
731
+ self.generation_config.max_length = config.max_position_embeddings
732
+ if hasattr(config, "vocab_size"):
733
+ self.generation_config.vocab_size = config.vocab_size
734
+
735
+ def forward(
736
+ self,
737
+ input_ids: torch.Tensor,
738
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
739
+ use_cache: bool = False,
740
+ **kwargs,
741
+ ) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
742
+ """Forward pass for text generation."""
743
+ logits, past_key_values = self.pico_decoder(
744
+ input_ids, past_key_values, use_cache
745
+ )
746
+ if use_cache:
747
+ return CausalLMOutputWithPast(
748
+ logits=logits,
749
+ past_key_values=past_key_values,
750
+ )
751
+ else:
752
+ return CausalLMOutput(
753
+ logits=logits,
754
+ )
755
+
756
+ def prepare_inputs_for_generation(
757
+ self,
758
+ input_ids: torch.LongTensor,
759
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
760
+ attention_mask: Optional[torch.LongTensor] = None,
761
+ **kwargs,
762
+ ) -> Dict[str, Any]:
763
+ """Prepare inputs for generation."""
764
+ # If we have past_key_values, we only need the last token
765
+ if past_key_values is not None:
766
+ input_ids = input_ids[:, -1:]
767
+
768
+ return {
769
+ "input_ids": input_ids,
770
+ "past_key_values": past_key_values,
771
+ "use_cache": True,
772
+ }
773
+
774
+ def get_input_embeddings(self):
775
+ """Get the input embeddings layer."""
776
+ return self.pico_decoder.embedding_proj
777
+
778
+ def set_input_embeddings(self, value):
779
+ """Set the input embeddings layer."""
780
+ self.pico_decoder.embedding_proj = value
781
+
782
+ def get_output_embeddings(self):
783
+ """Get the output embeddings layer."""
784
+ return self.pico_decoder.de_embedding_proj
785
+
786
+ def set_output_embeddings(self, value):
787
+ """Set the output embeddings layer."""
788
+ self.pico_decoder.de_embedding_proj = value
789
+
790
+ def get_lm_head(self):
791
+ """Get the language model head."""
792
+ return self.pico_decoder.de_embedding_proj
793
+
794
+ def can_generate(self) -> bool:
795
+ """Check if the model can generate text."""
796
+ return True
797
+
798
+ @property
799
+ def is_encoder_decoder(self) -> bool:
800
+ """Check if the model is an encoder-decoder model."""
801
+ return False
802
+
803
+ @property
804
+ def can_use_cache(self) -> bool:
805
+ """Check if the model can use KV cache."""
806
+ return True
807
+
808
+ def resize_token_embeddings(
809
+ self, new_num_tokens: Optional[int] = None
810
+ ) -> torch.nn.Embedding:
811
+ """Resize token embeddings."""
812
+ old_embeddings = self.get_input_embeddings()
813
+ if new_num_tokens is None:
814
+ new_num_tokens = old_embeddings.num_embeddings
815
+
816
+ new_embeddings = torch.nn.Embedding(
817
+ new_num_tokens, old_embeddings.embedding_dim
818
+ )
819
+ new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
820
+ old_embeddings.weight.data
821
+ )
822
+
823
+ self.pico_decoder.embedding_proj = new_embeddings
824
+ self.pico_decoder.de_embedding_proj = torch.nn.Linear(
825
+ old_embeddings.embedding_dim, new_num_tokens, bias=False
826
+ )
827
+
828
+ return new_embeddings
829
+
830
+ @classmethod
831
+ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
832
+ """
833
+ Load a pretrained model from a checkpoint.
834
+
835
+ This method handles loading from both the old PicoDecoderHF format and the new format.
836
+ """
837
+ # First try to load with the new class
838
+ try:
839
+ return super().from_pretrained(
840
+ pretrained_model_name_or_path, *model_args, **kwargs
841
+ )
842
+ except Exception as e:
843
+ print(f"Failed to load with new class: {e}")
844
+ print("Attempting to load with legacy class and convert...")
845
+
846
+ # Try to load with the old class and convert
847
+ try:
848
+ from transformers import AutoModel
849
+
850
+ old_model = AutoModel.from_pretrained(
851
+ pretrained_model_name_or_path,
852
+ trust_remote_code=True,
853
+ *model_args,
854
+ **kwargs,
855
+ )
856
+
857
+ # Create new model instance
858
+ new_model = cls(old_model.config)
859
+
860
+ # Copy state dict
861
+ new_model.load_state_dict(old_model.state_dict(), strict=False)
862
+
863
+ return new_model
864
+
865
+ except Exception as e2:
866
+ print(f"Failed to convert from legacy format: {e2}")
867
+ raise e
868
+
869
+
870
+ # Register the new class
871
+ PicoDecoderForCausalLM.register_for_auto_class("AutoModelForCausalLM")
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "pad_token": {
10
+ "content": "<|padding|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10000/tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "|||IP_ADDRESS|||",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": false
13
+ },
14
+ "1": {
15
+ "content": "<|padding|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "50254": {
23
+ "content": " ",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "50255": {
31
+ "content": " ",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "50256": {
39
+ "content": " ",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "50257": {
47
+ "content": " ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "50258": {
55
+ "content": " ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "50259": {
63
+ "content": " ",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "50260": {
71
+ "content": " ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "50261": {
79
+ "content": " ",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "50262": {
87
+ "content": " ",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "50263": {
95
+ "content": " ",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "50264": {
103
+ "content": " ",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "50265": {
111
+ "content": " ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "50266": {
119
+ "content": " ",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "50267": {
127
+ "content": " ",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "50268": {
135
+ "content": " ",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "50269": {
143
+ "content": " ",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "50270": {
151
+ "content": " ",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "50271": {
159
+ "content": " ",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "50272": {
167
+ "content": " ",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "50273": {
175
+ "content": " ",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "50274": {
183
+ "content": " ",
184
+ "lstrip": false,
185
+ "normalized": true,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "50275": {
191
+ "content": " ",
192
+ "lstrip": false,
193
+ "normalized": true,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "50276": {
199
+ "content": " ",
200
+ "lstrip": false,
201
+ "normalized": true,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "50277": {
207
+ "content": "|||EMAIL_ADDRESS|||",
208
+ "lstrip": false,
209
+ "normalized": true,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "50278": {
215
+ "content": "|||PHONE_NUMBER|||",
216
+ "lstrip": false,
217
+ "normalized": true,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "50279": {
223
+ "content": "<|endoftext|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ }
230
+ },
231
+ "bos_token": null,
232
+ "clean_up_tokenization_spaces": true,
233
+ "eos_token": "<|endoftext|>",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 1000000000000000019884624838656,
236
+ "pad_token": "<|padding|>",
237
+ "tokenizer_class": "GPTNeoXTokenizer",
238
+ "unk_token": null
239
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_hidden_dim": 384,
3
+ "architectures": [
4
+ "PicoDecoderHF"
5
+ ],
6
+ "attention_n_heads": 12,
7
+ "attention_n_kv_heads": 4,
8
+ "auto_map": {
9
+ "AutoConfig": "pico_decoder.PicoDecoderHFConfig",
10
+ "AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
11
+ },
12
+ "batch_size": 1024,
13
+ "d_model": 96,
14
+ "max_seq_len": 2048,
15
+ "model_type": "pico_decoder",
16
+ "n_layers": 12,
17
+ "norm_eps": 1e-06,
18
+ "position_emb_theta": 10000.0,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.48.3",
21
+ "vocab_size": 50304
22
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/fabric_state/checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfd25aca6b58042748930457a53ae232cc2fe1fe0fcb3bc166f56e3dbf4206d9
3
+ size 135543171
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "transformers_version": "4.48.3",
3
+ "vocab_size": 50304
4
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/learning_dynamics/train_activations.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:436fa27ce5201b358bc0ba8247d88e0bd13a0263dd95e2ed2f1085496e15543e
3
+ size 33819
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/learning_dynamics/train_data/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cd607fbdf282a424f3afd9963551ad22545bee806ea23117e0381e633118b37
3
+ size 71400
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/learning_dynamics/train_data/dataset_info.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "citation": "",
3
+ "description": "",
4
+ "features": {
5
+ "input_ids": {
6
+ "feature": {
7
+ "dtype": "int32",
8
+ "_type": "Value"
9
+ },
10
+ "_type": "Sequence"
11
+ },
12
+ "text": {
13
+ "dtype": "string",
14
+ "_type": "Value"
15
+ }
16
+ },
17
+ "homepage": "",
18
+ "license": ""
19
+ }
pico-decoder-tiny-dolma29k-v3/checkpoints/step_10500/learning_dynamics/train_data/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "a31f8d5143acaf4f",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": null
13
+ }