Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +480 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/config.json +22 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/fabric_state/checkpoint.pt +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/generation_config.json +4 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_activations.pt +0 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_data/data-00000-of-00001.arrow +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_data/dataset_info.json +19 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_data/state.json +13 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_gradients.pt +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_weights.pt +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/model.safetensors +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/pico_decoder.py +911 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/special_tokens_map.json +16 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/tokenizer.json +0 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/tokenizer_config.json +239 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/config.json +22 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/fabric_state/checkpoint.pt +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/generation_config.json +4 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_activations.pt +0 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_data/data-00000-of-00001.arrow +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_data/dataset_info.json +19 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_data/state.json +13 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_gradients.pt +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_weights.pt +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/model.safetensors +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/pico_decoder.py +911 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/special_tokens_map.json +16 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/tokenizer.json +0 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/tokenizer_config.json +239 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/config.json +22 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/fabric_state/checkpoint.pt +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/generation_config.json +4 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_activations.pt +0 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_data/data-00000-of-00001.arrow +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_data/dataset_info.json +19 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_data/state.json +13 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_gradients.pt +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_weights.pt +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/model.safetensors +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/pico_decoder.py +911 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/special_tokens_map.json +16 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/tokenizer.json +0 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/tokenizer_config.json +239 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/config.json +22 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/fabric_state/checkpoint.pt +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/generation_config.json +4 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/learning_dynamics/train_activations.pt +0 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/learning_dynamics/train_data/data-00000-of-00001.arrow +3 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/learning_dynamics/train_data/dataset_info.json +19 -0
- pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/learning_dynamics/train_data/state.json +13 -0
.gitattributes
ADDED
|
@@ -0,0 +1,480 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_12000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_12000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_12000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_12000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_12000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_13000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_13000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_13000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_13000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_13000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_14000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_14000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_14000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_14000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_14000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_15000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_15000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_15000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_15000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_15000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_16000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_16000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_16000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_16000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_16000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_17000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_17000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_17000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_17000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_17000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_18000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_18000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 53 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_18000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 54 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_18000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_18000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 56 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_19000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 57 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_19000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 58 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_19000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 59 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_19000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 60 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_19000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 61 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_2000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 62 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_2000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 63 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_2000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 64 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_2000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 65 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_2000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 66 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_20000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 67 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_20000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 68 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_20000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 69 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_20000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 70 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_20000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 71 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_21000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 72 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_21000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 73 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_21000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 74 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_21000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 75 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_21000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 76 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_22000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 77 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_22000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 78 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_22000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 79 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_22000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 80 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_22000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 81 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_23000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 82 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_23000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 83 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_23000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 84 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_23000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 85 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_23000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 86 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_24000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 87 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_24000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 88 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_24000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 89 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_24000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 90 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_24000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 91 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_25000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 92 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_25000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 93 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_25000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 94 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_25000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 95 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_25000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 96 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_26000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 97 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_26000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 98 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_26000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 99 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_26000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 100 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_26000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 101 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_27000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 102 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_27000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 103 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_27000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 104 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_27000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 105 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_27000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 106 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_28000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 107 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_28000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 108 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_28000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 109 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_28000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 110 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_28000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 111 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_29000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 112 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_29000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 113 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_29000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 114 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_29000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 115 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_29000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 116 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_3000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 117 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_3000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 118 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_3000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 119 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_3000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 120 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_3000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 121 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_30000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 122 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_30000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 123 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_30000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 124 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_30000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 125 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_30000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 126 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_31000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 127 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_31000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 128 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_31000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 129 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_31000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 130 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_31000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 131 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_32000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 132 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_32000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 133 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_32000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 134 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_32000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 135 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_32000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 136 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_33000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 137 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_33000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 138 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_33000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 139 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_33000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 140 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_33000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 141 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_34000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 142 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_34000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 143 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_34000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 144 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_34000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 145 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_34000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 146 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_35000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 147 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_35000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 148 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_35000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 149 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_35000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 150 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_35000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 151 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_36000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 152 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_36000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 153 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_36000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 154 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_36000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 155 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_36000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 156 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_37000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 157 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_37000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 158 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_37000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 159 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_37000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 160 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_37000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 161 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_38000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 162 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_38000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 163 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_38000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 164 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_38000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 165 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_38000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 166 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_39000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 167 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_39000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 168 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_39000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 169 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_39000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 170 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_39000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 171 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_4000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 172 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_4000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 173 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_4000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 174 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_4000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 175 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_4000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 176 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_40000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 177 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_40000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 178 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_40000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 179 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_40000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 180 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_40000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 181 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_41000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 182 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_41000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 183 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_41000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 184 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_41000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 185 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_41000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 186 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_42000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 187 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_42000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 188 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_42000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 189 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_42000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 190 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_42000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 191 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_43000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 192 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_43000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 193 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_43000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 194 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_43000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 195 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_43000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 196 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_44000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 197 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_44000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 198 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_44000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 199 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_44000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 200 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_44000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 201 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_45000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 202 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_45000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 203 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_45000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 204 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_45000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 205 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_45000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 206 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_46000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 207 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_46000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 208 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_46000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 209 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_46000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 210 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_46000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 211 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_47000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 212 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_47000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 213 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_47000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 214 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_47000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 215 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_47000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 216 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_48000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 217 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_48000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 218 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_48000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 219 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_48000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 220 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_48000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 221 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_49000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 222 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_49000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 223 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_49000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 224 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_49000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 225 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_49000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 226 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_5000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 227 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_5000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 228 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_5000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 229 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_5000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 230 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_5000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 231 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_50000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 232 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_50000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 233 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_50000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 234 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_50000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 235 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_50000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 236 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_51000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 237 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_51000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 238 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_51000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 239 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_51000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 240 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_51000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 241 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_52000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 242 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_52000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 243 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_52000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 244 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_52000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 245 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_52000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 246 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_53000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 247 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_53000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 248 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_53000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 249 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_53000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 250 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_53000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 251 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_54000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 252 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_54000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 253 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_54000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 254 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_54000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 255 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_54000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 256 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_55000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 257 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_55000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 258 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_55000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 259 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_55000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 260 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_55000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 261 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_56000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 262 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_56000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 263 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_56000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 264 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_56000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 265 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_56000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 266 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_57000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 267 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_57000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 268 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_57000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 269 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_57000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 270 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_57000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 271 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_58000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 272 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_58000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 273 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_58000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 274 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_58000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 275 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_58000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 276 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_59000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 277 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_59000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 278 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_59000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 279 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_59000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 280 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_59000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 281 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_6000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 282 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_6000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 283 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_6000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 284 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_6000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 285 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_6000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 286 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_60000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 287 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_60000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 288 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_60000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 289 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_60000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 290 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_60000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 291 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_61000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 292 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_61000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 293 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_61000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 294 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_61000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 295 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_61000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 296 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_62000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 297 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_62000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 298 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_62000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 299 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_62000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 300 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_62000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 301 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_63000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 302 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_63000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 303 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_63000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 304 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_63000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 305 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_63000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 306 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_64000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 307 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_64000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 308 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_64000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 309 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_64000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 310 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_64000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 311 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_65000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 312 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_65000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 313 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_65000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 314 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_65000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 315 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_65000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 316 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_66000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 317 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_66000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 318 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_66000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 319 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_66000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 320 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_66000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 321 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_67000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 322 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_67000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 323 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_67000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 324 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_67000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 325 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_67000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 326 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_68000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 327 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_68000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 328 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_68000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 329 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_68000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 330 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_68000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 331 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_69000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 332 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_69000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 333 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_69000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 334 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_69000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 335 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_69000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 336 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_7000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 337 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_7000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 338 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_7000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 339 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_7000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 340 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_7000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 341 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_70000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 342 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_70000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 343 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_70000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 344 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_70000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 345 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_70000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 346 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_71000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 347 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_71000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 348 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_71000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 349 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_71000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 350 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_71000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 351 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_72000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 352 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_72000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 353 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_72000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 354 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_72000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 355 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_72000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 356 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_73000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 357 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_73000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 358 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_73000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 359 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_73000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 360 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_73000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 361 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_74000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 362 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_74000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 363 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_74000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 364 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_74000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 365 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_74000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 366 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_75000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 367 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_75000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 368 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_75000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 369 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_75000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 370 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_75000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 371 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_76000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 372 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_76000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 373 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_76000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 374 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_76000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 375 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_76000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 376 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_77000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 377 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_77000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 378 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_77000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 379 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_77000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 380 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_77000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 381 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_78000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 382 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_78000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 383 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_78000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 384 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_78000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 385 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_78000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 386 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_79000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 387 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_79000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 388 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_79000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 389 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_79000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 390 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_79000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 391 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_8000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 392 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_8000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 393 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_8000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 394 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_8000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 395 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_8000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 396 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_80000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 397 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_80000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 398 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_80000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 399 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_80000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 400 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_80000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 401 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_81000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 402 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_81000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 403 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_81000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 404 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_81000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 405 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_81000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 406 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_82000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 407 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_82000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 408 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_82000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 409 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_82000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 410 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_82000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 411 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_83000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 412 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_83000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 413 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_83000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 414 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_83000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 415 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_83000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 416 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_84000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 417 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_84000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 418 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_84000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 419 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_84000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 420 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_84000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 421 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_85000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 422 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_85000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 423 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_85000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 424 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_85000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 425 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_85000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 426 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_86000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 427 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_86000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 428 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_86000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 429 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_86000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 430 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_86000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 431 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_87000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 432 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_87000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 433 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_87000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 434 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_87000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 435 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_87000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 436 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_88000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 437 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_88000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 438 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_88000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 439 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_88000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 440 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_88000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 441 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_89000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 442 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_89000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 443 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_89000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 444 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_89000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 445 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_89000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 446 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_9000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 447 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_9000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 448 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_9000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 449 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_9000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 450 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_9000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 451 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_90000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 452 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_90000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 453 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_90000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 454 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_90000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 455 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_90000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 456 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_91000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 457 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_91000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 458 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_91000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 459 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_91000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 460 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_91000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 461 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_92000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 462 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_92000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 463 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_92000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 464 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_92000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 465 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_92000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 466 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_93000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 467 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_93000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 468 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_93000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 469 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_93000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 470 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_93000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 471 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_94000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 472 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_94000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 473 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_94000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 474 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_94000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 475 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_94000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 476 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_95000/fabric_state/checkpoint.pt filter=lfs diff=lfs merge=lfs -text
|
| 477 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_95000/learning_dynamics/train_data/data-00000-of-00001.arrow filter=lfs diff=lfs merge=lfs -text
|
| 478 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_95000/learning_dynamics/train_gradients.pt filter=lfs diff=lfs merge=lfs -text
|
| 479 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_95000/learning_dynamics/train_weights.pt filter=lfs diff=lfs merge=lfs -text
|
| 480 |
+
pico-decoder-tiny-dolma20M-v1/checkpoints/step_95000/model.safetensors filter=lfs diff=lfs merge=lfs -text
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/config.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation_hidden_dim": 384,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"PicoDecoderHF"
|
| 5 |
+
],
|
| 6 |
+
"attention_n_heads": 12,
|
| 7 |
+
"attention_n_kv_heads": 4,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "pico_decoder.PicoDecoderHFConfig",
|
| 10 |
+
"AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
|
| 11 |
+
},
|
| 12 |
+
"batch_size": 1024,
|
| 13 |
+
"d_model": 96,
|
| 14 |
+
"max_seq_len": 2048,
|
| 15 |
+
"model_type": "pico_decoder",
|
| 16 |
+
"n_layers": 12,
|
| 17 |
+
"norm_eps": 1e-06,
|
| 18 |
+
"position_emb_theta": 10000.0,
|
| 19 |
+
"torch_dtype": "float32",
|
| 20 |
+
"transformers_version": "4.48.3",
|
| 21 |
+
"vocab_size": 50304
|
| 22 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/fabric_state/checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d01a6a79f53f412afc600ef5825ba1ce606eacf5d8808aa0c83de62b2b42ef28
|
| 3 |
+
size 45187997
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"transformers_version": "4.48.3",
|
| 3 |
+
"vocab_size": 50304
|
| 4 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_activations.pt
ADDED
|
Binary file (98.3 kB). View file
|
|
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_data/data-00000-of-00001.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:71dea5221a5b809d03b575f9a437c3772951dc4d8c202e5af09d005a23791b3a
|
| 3 |
+
size 271568
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_data/dataset_info.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"citation": "",
|
| 3 |
+
"description": "",
|
| 4 |
+
"features": {
|
| 5 |
+
"input_ids": {
|
| 6 |
+
"feature": {
|
| 7 |
+
"dtype": "int32",
|
| 8 |
+
"_type": "Value"
|
| 9 |
+
},
|
| 10 |
+
"_type": "Sequence"
|
| 11 |
+
},
|
| 12 |
+
"text": {
|
| 13 |
+
"dtype": "string",
|
| 14 |
+
"_type": "Value"
|
| 15 |
+
}
|
| 16 |
+
},
|
| 17 |
+
"homepage": "",
|
| 18 |
+
"license": ""
|
| 19 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_data/state.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_data_files": [
|
| 3 |
+
{
|
| 4 |
+
"filename": "data-00000-of-00001.arrow"
|
| 5 |
+
}
|
| 6 |
+
],
|
| 7 |
+
"_fingerprint": "6cc12b19e292c1f8",
|
| 8 |
+
"_format_columns": null,
|
| 9 |
+
"_format_kwargs": {},
|
| 10 |
+
"_format_type": null,
|
| 11 |
+
"_output_all_columns": false,
|
| 12 |
+
"_split": null
|
| 13 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_gradients.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9cd1f0ba01d7b6d8f8c470ba7065f7ba7251409f02235127fb5952480aec233a
|
| 3 |
+
size 2371527
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/learning_dynamics/train_weights.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c029ef92a6494ae121c847e432e52e6a8ff3bf7d9fef3e61bef871c1e9a9aa02
|
| 3 |
+
size 2371443
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1852515eb5c8556533445f22edf523884b9f8cc44812379a6a951668a4ffa3a3
|
| 3 |
+
size 45143592
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/pico_decoder.py
ADDED
|
@@ -0,0 +1,911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Pico Decoder: A Lightweight Causal Transformer Language Model
|
| 3 |
+
|
| 4 |
+
Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
|
| 5 |
+
|
| 6 |
+
Everything is written with a modular design for easy modification and experimentation.
|
| 7 |
+
|
| 8 |
+
Key features:
|
| 9 |
+
- RMSNorm for layer normalization
|
| 10 |
+
- Rotary Positional Embeddings (RoPE)
|
| 11 |
+
- Multi-head attention with KV-cache support
|
| 12 |
+
- SwiGLU activation function
|
| 13 |
+
- Residual connections throughout
|
| 14 |
+
|
| 15 |
+
- KV-cache for faster autoregressive generation
|
| 16 |
+
|
| 17 |
+
References:
|
| 18 |
+
- RoPE: https://arxiv.org/abs/2104.09864
|
| 19 |
+
- SwiGLU: https://arxiv.org/abs/2002.05202
|
| 20 |
+
- LLAMA: https://arxiv.org/abs/2302.13971
|
| 21 |
+
|
| 22 |
+
Adapted from:
|
| 23 |
+
- OLMO: https://github.com/allenai/OLMo
|
| 24 |
+
- LLAMA: https://github.com/meta/llama
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
from dataclasses import asdict
|
| 28 |
+
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
|
| 29 |
+
|
| 30 |
+
import torch
|
| 31 |
+
import torch.nn as nn
|
| 32 |
+
import torch.nn.functional as F
|
| 33 |
+
|
| 34 |
+
# Handle PyTorch version compatibility for attention backend
|
| 35 |
+
try:
|
| 36 |
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
| 37 |
+
|
| 38 |
+
HAS_TORCH_ATTENTION = True
|
| 39 |
+
except ImportError:
|
| 40 |
+
# Fallback for older PyTorch versions
|
| 41 |
+
HAS_TORCH_ATTENTION = False
|
| 42 |
+
SDPBackend = None
|
| 43 |
+
sdpa_kernel = None
|
| 44 |
+
|
| 45 |
+
from transformers import GenerationMixin, PretrainedConfig, PreTrainedModel
|
| 46 |
+
from transformers.generation import GenerationConfig
|
| 47 |
+
from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
|
| 48 |
+
|
| 49 |
+
try:
|
| 50 |
+
if TYPE_CHECKING:
|
| 51 |
+
# We need to do this to avoid importing these when creating the HF-compatible models
|
| 52 |
+
from src.config import ModelConfig
|
| 53 |
+
except ImportError:
|
| 54 |
+
pass
|
| 55 |
+
|
| 56 |
+
########################################################
|
| 57 |
+
#
|
| 58 |
+
# Layer Normalization
|
| 59 |
+
#
|
| 60 |
+
########################################################
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class RMSNorm(torch.nn.Module):
|
| 64 |
+
"""Root Mean Square Layer Normalization.
|
| 65 |
+
|
| 66 |
+
A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
|
| 67 |
+
resulting in improved stability and performance.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
|
| 71 |
+
- config.norm_eps: Small constant for numerical stability
|
| 72 |
+
- config.d_model: Model dimension for the weight parameter
|
| 73 |
+
|
| 74 |
+
References:
|
| 75 |
+
https://arxiv.org/abs/1910.07467
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
|
| 79 |
+
super().__init__()
|
| 80 |
+
self.eps = config.norm_eps
|
| 81 |
+
self.weight = nn.Parameter(torch.ones(config.d_model))
|
| 82 |
+
|
| 83 |
+
def _norm(self, x: torch.Tensor) -> torch.Tensor:
|
| 84 |
+
"""
|
| 85 |
+
Normalizes the input tensor by its RMS value.
|
| 86 |
+
"""
|
| 87 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 88 |
+
|
| 89 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 90 |
+
"""
|
| 91 |
+
Applies RMS normalization to the input tensor and scales it by the weight parameter.
|
| 92 |
+
"""
|
| 93 |
+
output = self._norm(x.float()).type_as(x)
|
| 94 |
+
return output * self.weight
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
########################################################
|
| 98 |
+
#
|
| 99 |
+
# Positional Embedding
|
| 100 |
+
#
|
| 101 |
+
########################################################
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class RoPE(nn.Module):
|
| 105 |
+
"""Rotary Positional Embeddings (RoPE).
|
| 106 |
+
|
| 107 |
+
Implements position-dependent rotation of keys and queries in attention mechanism,
|
| 108 |
+
allowing better modeling of relative positions in sequences. Uses complex number
|
| 109 |
+
operations for efficient rotation.
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
|
| 113 |
+
- config.position_emb_theta: Base for frequency computation
|
| 114 |
+
- config.d_model: Model dimension
|
| 115 |
+
- config.attention_n_heads: Number of attention heads
|
| 116 |
+
- config.max_seq_len: Maximum sequence length
|
| 117 |
+
|
| 118 |
+
References:
|
| 119 |
+
https://arxiv.org/abs/2104.09864
|
| 120 |
+
"""
|
| 121 |
+
|
| 122 |
+
_freqs_cis_tensor: torch.Tensor | None = None
|
| 123 |
+
|
| 124 |
+
def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
|
| 125 |
+
super().__init__()
|
| 126 |
+
|
| 127 |
+
self.theta = config.position_emb_theta
|
| 128 |
+
self.dim = config.d_model // config.attention_n_heads
|
| 129 |
+
|
| 130 |
+
max_seq_len = config.max_seq_len
|
| 131 |
+
|
| 132 |
+
# only gets set once, and then reused for all RoPE instances
|
| 133 |
+
if RoPE._freqs_cis_tensor is None:
|
| 134 |
+
RoPE._freqs_cis_tensor = self._setup_freqs_cis(
|
| 135 |
+
max_seq_len, self.theta, self.dim
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# register _freqs_cis buffer
|
| 139 |
+
# can be easily recomputed so persistent=False
|
| 140 |
+
self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
|
| 141 |
+
|
| 142 |
+
@classmethod
|
| 143 |
+
def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
|
| 144 |
+
"""Setup Frequency Tensor for RoPE Embeddings
|
| 145 |
+
|
| 146 |
+
Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
|
| 147 |
+
|
| 148 |
+
Note other implementations will use cos and sin directly, but using the complex
|
| 149 |
+
number representation is (probably) more efficient:
|
| 150 |
+
|
| 151 |
+
e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
|
| 152 |
+
"""
|
| 153 |
+
_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
| 154 |
+
positions = torch.arange(seq_len)
|
| 155 |
+
freqs = torch.outer(positions, _freqs)
|
| 156 |
+
return torch.polar(torch.ones_like(freqs), freqs) # complex64
|
| 157 |
+
|
| 158 |
+
def get_freqs_cis(
|
| 159 |
+
self, input_shape: torch.Size, start_pos: int, end_pos: int
|
| 160 |
+
) -> torch.Tensor:
|
| 161 |
+
"""Reshape Frequency Tensor for RoPE Embeddings
|
| 162 |
+
|
| 163 |
+
Makes the frequency tensor broadcastable with the input tensor.
|
| 164 |
+
"""
|
| 165 |
+
_freqs_cis = self._freqs_cis[start_pos:end_pos]
|
| 166 |
+
ndim = len(input_shape)
|
| 167 |
+
assert 0 <= 1 < ndim
|
| 168 |
+
assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
|
| 169 |
+
|
| 170 |
+
# TODO: Check whether this is correct (might be able to remove this)
|
| 171 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
|
| 172 |
+
return _freqs_cis.view(*shape)
|
| 173 |
+
|
| 174 |
+
def forward(
|
| 175 |
+
self,
|
| 176 |
+
queries: torch.Tensor,
|
| 177 |
+
keys: torch.Tensor,
|
| 178 |
+
start_pos: int = 0,
|
| 179 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 180 |
+
"""Apply RoPE Embeddings to Queries and Keys
|
| 181 |
+
|
| 182 |
+
Applies the rotary positional embeddings to the input tensors via complex num multiplication
|
| 183 |
+
|
| 184 |
+
NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
|
| 185 |
+
"""
|
| 186 |
+
queries_ = torch.view_as_complex(
|
| 187 |
+
queries.float().reshape(*queries.shape[:-1], -1, 2)
|
| 188 |
+
)
|
| 189 |
+
keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
|
| 190 |
+
|
| 191 |
+
input_shape = (
|
| 192 |
+
queries_.shape
|
| 193 |
+
) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
|
| 194 |
+
freqs_start_pos = start_pos
|
| 195 |
+
freqs_end_pos = freqs_start_pos + queries_.shape[1]
|
| 196 |
+
|
| 197 |
+
freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
|
| 198 |
+
|
| 199 |
+
queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
|
| 200 |
+
keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
|
| 201 |
+
return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
########################################################
|
| 205 |
+
#
|
| 206 |
+
# Attention
|
| 207 |
+
#
|
| 208 |
+
########################################################
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class Attention(nn.Module):
|
| 212 |
+
"""Multi-head Attention with Group Query Attention support.
|
| 213 |
+
|
| 214 |
+
Implements scaled dot-product attention and supports:
|
| 215 |
+
- Grouped Query Attention (GQA)
|
| 216 |
+
- Key-Value caching for efficient inference
|
| 217 |
+
- RoPE integration
|
| 218 |
+
|
| 219 |
+
Args:
|
| 220 |
+
config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
|
| 221 |
+
- config.attention_n_heads: Number of attention heads
|
| 222 |
+
- config.attention_n_kv_heads: Number of key/value heads
|
| 223 |
+
- config.d_model: Model dimension
|
| 224 |
+
- config.batch_size: Maximum batch size
|
| 225 |
+
- config.max_seq_len: Maximum sequence length
|
| 226 |
+
|
| 227 |
+
Shape:
|
| 228 |
+
- Input: (batch_size, seq_len, d_model)
|
| 229 |
+
- Output: (batch_size, seq_len, d_model)
|
| 230 |
+
"""
|
| 231 |
+
|
| 232 |
+
def __init__(
|
| 233 |
+
self,
|
| 234 |
+
config: Union["ModelConfig", "PicoDecoderHFConfig"],
|
| 235 |
+
):
|
| 236 |
+
super().__init__()
|
| 237 |
+
|
| 238 |
+
self.n_heads = config.attention_n_heads
|
| 239 |
+
self.n_kv_heads = config.attention_n_kv_heads
|
| 240 |
+
|
| 241 |
+
self.batch_size = config.batch_size
|
| 242 |
+
self.max_seq_len = config.max_seq_len
|
| 243 |
+
|
| 244 |
+
d_model = config.d_model
|
| 245 |
+
self.head_dim = d_model // self.n_heads
|
| 246 |
+
|
| 247 |
+
self.n_rep = self.n_heads // self.n_kv_heads
|
| 248 |
+
|
| 249 |
+
self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
|
| 250 |
+
self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
|
| 251 |
+
self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
|
| 252 |
+
self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
|
| 253 |
+
|
| 254 |
+
self.rope = RoPE(config)
|
| 255 |
+
|
| 256 |
+
def forward(
|
| 257 |
+
self,
|
| 258 |
+
input: torch.Tensor,
|
| 259 |
+
mask: Optional[torch.Tensor] = None,
|
| 260 |
+
past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
|
| 261 |
+
use_cache: bool = False,
|
| 262 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
| 263 |
+
"""Forward pass for the attention mechanism.
|
| 264 |
+
|
| 265 |
+
Computes queries, keys, and values for the attention mechanism. Applies rotary positional
|
| 266 |
+
embeddings to the queries and keys, and then computes attention scores and outputs.
|
| 267 |
+
|
| 268 |
+
For an introduction to the attention mechanism, see:
|
| 269 |
+
https://arxiv.org/abs/1706.03762
|
| 270 |
+
|
| 271 |
+
A few things to note:
|
| 272 |
+
- The past_key_values is used to implement the KV cache, which is used to speed up
|
| 273 |
+
generation by caching the KV pairs from previous forward passes. This is useful when doing
|
| 274 |
+
tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
|
| 275 |
+
modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
|
| 276 |
+
its own KV cache - this KV cache is implemented as a tuple.
|
| 277 |
+
"""
|
| 278 |
+
bsz, seq_len, _ = input.shape
|
| 279 |
+
_queries, _keys, _values = (
|
| 280 |
+
self.q_proj(input),
|
| 281 |
+
self.k_proj(input),
|
| 282 |
+
self.v_proj(input),
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
# Reshaping for multi-head attention
|
| 286 |
+
queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
|
| 287 |
+
keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
|
| 288 |
+
values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
|
| 289 |
+
|
| 290 |
+
# The start position is used to apply the RoPE embeddings to only the new tokens
|
| 291 |
+
# when using the kv_cache in the attention mechanism.
|
| 292 |
+
# We want to start from the last position in the cache.
|
| 293 |
+
start_pos = 0
|
| 294 |
+
if past_key_values is not None and past_key_values[0] is not None:
|
| 295 |
+
start_pos = past_key_values[0].shape[1]
|
| 296 |
+
|
| 297 |
+
# apply rotary positional embeddings
|
| 298 |
+
queries, keys = self.rope(queries, keys, start_pos)
|
| 299 |
+
|
| 300 |
+
if (
|
| 301 |
+
past_key_values is not None
|
| 302 |
+
and past_key_values[0] is not None
|
| 303 |
+
and past_key_values[1] is not None
|
| 304 |
+
):
|
| 305 |
+
keys = torch.cat([past_key_values[0], keys], dim=1)
|
| 306 |
+
values = torch.cat([past_key_values[1], values], dim=1)
|
| 307 |
+
|
| 308 |
+
if use_cache:
|
| 309 |
+
cached_keys = keys
|
| 310 |
+
cached_values = values
|
| 311 |
+
else:
|
| 312 |
+
cached_keys = None
|
| 313 |
+
cached_values = None
|
| 314 |
+
|
| 315 |
+
queries = queries.transpose(1, 2)
|
| 316 |
+
keys = keys.transpose(1, 2)
|
| 317 |
+
values = values.transpose(1, 2)
|
| 318 |
+
|
| 319 |
+
apply_gqa = self.n_rep > 1
|
| 320 |
+
if apply_gqa and queries.device.type == "mps":
|
| 321 |
+
# NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
|
| 322 |
+
# outside of the kernel to get the same effect.
|
| 323 |
+
# See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
|
| 324 |
+
keys = keys.repeat_interleave(self.n_rep, dim=-3)
|
| 325 |
+
values = values.repeat_interleave(self.n_rep, dim=-3)
|
| 326 |
+
apply_gqa = False
|
| 327 |
+
|
| 328 |
+
if HAS_TORCH_ATTENTION:
|
| 329 |
+
backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
|
| 330 |
+
with sdpa_kernel(backends=backends):
|
| 331 |
+
attn_output = F.scaled_dot_product_attention(
|
| 332 |
+
queries.contiguous(),
|
| 333 |
+
keys.contiguous(),
|
| 334 |
+
values.contiguous(),
|
| 335 |
+
attn_mask=mask.to(queries.dtype) if mask is not None else None,
|
| 336 |
+
enable_gqa=apply_gqa,
|
| 337 |
+
)
|
| 338 |
+
else:
|
| 339 |
+
# Fallback for older PyTorch versions - use default backend
|
| 340 |
+
attn_output = F.scaled_dot_product_attention(
|
| 341 |
+
queries.contiguous(),
|
| 342 |
+
keys.contiguous(),
|
| 343 |
+
values.contiguous(),
|
| 344 |
+
attn_mask=mask.to(queries.dtype) if mask is not None else None,
|
| 345 |
+
enable_gqa=apply_gqa,
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
|
| 349 |
+
output = self.o_proj(attn_output)
|
| 350 |
+
|
| 351 |
+
return output, (cached_keys, cached_values)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
########################################################
|
| 355 |
+
#
|
| 356 |
+
# SwiGLU (Combines MLP and Activation)
|
| 357 |
+
#
|
| 358 |
+
########################################################
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
class SwiGLU(nn.Module):
|
| 362 |
+
"""SwiGLU Activation Function with Linear Projections.
|
| 363 |
+
|
| 364 |
+
Implements the SwiGLU activation function combined with linear transformations,
|
| 365 |
+
serving as the feed-forward network in transformer blocks.
|
| 366 |
+
|
| 367 |
+
Args:
|
| 368 |
+
config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
|
| 369 |
+
- config.d_model: Model dimension
|
| 370 |
+
- config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
|
| 371 |
+
|
| 372 |
+
References:
|
| 373 |
+
https://arxiv.org/abs/2002.05202
|
| 374 |
+
"""
|
| 375 |
+
|
| 376 |
+
def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
|
| 377 |
+
super().__init__()
|
| 378 |
+
|
| 379 |
+
model_dim = config.d_model
|
| 380 |
+
act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
|
| 381 |
+
|
| 382 |
+
self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
|
| 383 |
+
self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
|
| 384 |
+
self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
|
| 385 |
+
|
| 386 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 387 |
+
return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
########################################################
|
| 391 |
+
#
|
| 392 |
+
# PicoDecoderBlock
|
| 393 |
+
#
|
| 394 |
+
########################################################
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
class PicoDecoderBlock(nn.Module):
|
| 398 |
+
"""Single Transformer Block with Attention and Feed-forward layers.
|
| 399 |
+
|
| 400 |
+
Implements a standard transformer block with:
|
| 401 |
+
- Multi-head attention with normalization and residual connection
|
| 402 |
+
- SwiGLU feed-forward network with normalization and residual connection
|
| 403 |
+
|
| 404 |
+
Args:
|
| 405 |
+
config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
|
| 406 |
+
a HuggingFace PicoDecoderHFConfig
|
| 407 |
+
"""
|
| 408 |
+
|
| 409 |
+
def __init__(
|
| 410 |
+
self,
|
| 411 |
+
config: Union["ModelConfig", "PicoDecoderHFConfig"],
|
| 412 |
+
):
|
| 413 |
+
super().__init__()
|
| 414 |
+
|
| 415 |
+
self.attention = Attention(config)
|
| 416 |
+
self.swiglu = SwiGLU(config)
|
| 417 |
+
self.attention_norm = RMSNorm(config)
|
| 418 |
+
self.swiglu_norm = RMSNorm(config)
|
| 419 |
+
|
| 420 |
+
def forward(
|
| 421 |
+
self,
|
| 422 |
+
input: torch.Tensor,
|
| 423 |
+
mask: Optional[torch.Tensor] = None,
|
| 424 |
+
past_key_values: Optional[Tuple[torch.Tensor]] = None,
|
| 425 |
+
use_cache: bool = False,
|
| 426 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
| 427 |
+
attention_output, cached_key_values = self.attention(
|
| 428 |
+
self.attention_norm(input),
|
| 429 |
+
mask=mask,
|
| 430 |
+
past_key_values=past_key_values,
|
| 431 |
+
use_cache=use_cache,
|
| 432 |
+
)
|
| 433 |
+
# NOTE: cached_key_values is None if use_cache is False
|
| 434 |
+
|
| 435 |
+
h = input + attention_output
|
| 436 |
+
out = h + self.swiglu(self.swiglu_norm(h))
|
| 437 |
+
return out, cached_key_values
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
########################################################
|
| 441 |
+
#
|
| 442 |
+
# Pico Decoder (Causal Transformer Model)
|
| 443 |
+
#
|
| 444 |
+
########################################################
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
class PicoDecoder(nn.Module):
|
| 448 |
+
"""
|
| 449 |
+
Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
|
| 450 |
+
single autoregressive model.
|
| 451 |
+
|
| 452 |
+
For more information on the model, see the classes for the modules that make up the model.
|
| 453 |
+
"""
|
| 454 |
+
|
| 455 |
+
def __init__(
|
| 456 |
+
self,
|
| 457 |
+
model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
|
| 458 |
+
):
|
| 459 |
+
super().__init__()
|
| 460 |
+
self.config = model_config
|
| 461 |
+
|
| 462 |
+
self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
|
| 463 |
+
self.layers = nn.ModuleList(
|
| 464 |
+
[PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
|
| 465 |
+
)
|
| 466 |
+
self.output_norm = RMSNorm(self.config)
|
| 467 |
+
self.de_embedding_proj = nn.Linear(
|
| 468 |
+
self.config.d_model, self.config.vocab_size, bias=False
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
def convert_to_hf_model(self) -> "PicoDecoderHF":
|
| 472 |
+
"""Convert the Lightning model to a HuggingFace model."""
|
| 473 |
+
# Create HF config without fabric-specific settings
|
| 474 |
+
hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
|
| 475 |
+
|
| 476 |
+
# Create new HF model
|
| 477 |
+
hf_model = PicoDecoderHF(hf_config)
|
| 478 |
+
|
| 479 |
+
# Copy state dict, excluding fabric-specific keys
|
| 480 |
+
hf_model.load_state_dict(self.state_dict(prefix="pico_decoder."))
|
| 481 |
+
|
| 482 |
+
return hf_model
|
| 483 |
+
|
| 484 |
+
def forward(
|
| 485 |
+
self,
|
| 486 |
+
input_ids: torch.Tensor,
|
| 487 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 488 |
+
use_cache: bool = False,
|
| 489 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
|
| 490 |
+
"""
|
| 491 |
+
This is the forward pass for the entire Pico model. It boils down to:
|
| 492 |
+
- Embedding the input ids
|
| 493 |
+
- Creating a causal mask
|
| 494 |
+
- Processing through the pico layers
|
| 495 |
+
- Projecting the output to logits
|
| 496 |
+
|
| 497 |
+
NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
|
| 498 |
+
generation by caching the KV pairs from previous forward passes. This is useful when doing
|
| 499 |
+
tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
|
| 500 |
+
modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
|
| 501 |
+
its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
|
| 502 |
+
KV caches (so a tuple of tuples).
|
| 503 |
+
"""
|
| 504 |
+
|
| 505 |
+
seq_len = input_ids.shape[-1]
|
| 506 |
+
h = self.embedding_proj(input_ids)
|
| 507 |
+
|
| 508 |
+
# Calculate start position from past cached KV pairs. Remember that each layer has its
|
| 509 |
+
# own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
|
| 510 |
+
# correct layer and then for either the keys or values.
|
| 511 |
+
start_pos = 0
|
| 512 |
+
if (
|
| 513 |
+
past_key_values is not None
|
| 514 |
+
and past_key_values[0] is not None
|
| 515 |
+
and past_key_values[0][0] is not None
|
| 516 |
+
):
|
| 517 |
+
start_pos = past_key_values[0][0].shape[1]
|
| 518 |
+
|
| 519 |
+
# Create causal mask for current sequence
|
| 520 |
+
mask = None
|
| 521 |
+
if seq_len > 1:
|
| 522 |
+
mask = torch.full((seq_len, seq_len), float("-inf"))
|
| 523 |
+
mask = torch.triu(mask, diagonal=1)
|
| 524 |
+
|
| 525 |
+
# If using KV cache, extend mask to cover cached sequence length
|
| 526 |
+
if past_key_values is not None:
|
| 527 |
+
# Add zeros for cached tokens (we can attend to all of them)
|
| 528 |
+
mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
|
| 529 |
+
|
| 530 |
+
mask = mask.to(h.device)
|
| 531 |
+
|
| 532 |
+
# NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
|
| 533 |
+
# in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
|
| 534 |
+
cached_key_values = () if use_cache else None
|
| 535 |
+
|
| 536 |
+
# Process through transformer blocks
|
| 537 |
+
for idx, layer in enumerate(self.layers):
|
| 538 |
+
layer_past_key_values = None
|
| 539 |
+
if past_key_values is not None:
|
| 540 |
+
try:
|
| 541 |
+
# Handle both tuple-based cache and HuggingFace cache objects
|
| 542 |
+
if hasattr(past_key_values, "__getitem__") and idx < len(
|
| 543 |
+
past_key_values
|
| 544 |
+
):
|
| 545 |
+
layer_past_key_values = past_key_values[idx]
|
| 546 |
+
except (KeyError, IndexError, TypeError):
|
| 547 |
+
# If we can't access the cache properly, just skip it
|
| 548 |
+
layer_past_key_values = None
|
| 549 |
+
|
| 550 |
+
h, layer_cached_key_values = layer(
|
| 551 |
+
h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
if use_cache:
|
| 555 |
+
cached_key_values += (layer_cached_key_values,)
|
| 556 |
+
|
| 557 |
+
# Final norm and projection
|
| 558 |
+
h = self.output_norm(h)
|
| 559 |
+
logits = self.de_embedding_proj(h).float()
|
| 560 |
+
|
| 561 |
+
return logits, cached_key_values
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
########################################################
|
| 565 |
+
#
|
| 566 |
+
# HuggingFace Wrapper for the Pico Decoder model.
|
| 567 |
+
#
|
| 568 |
+
########################################################
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
class PicoDecoderHFConfig(PretrainedConfig):
|
| 572 |
+
"""Config class for the Pico Decoder HuggingFace wrapper."""
|
| 573 |
+
|
| 574 |
+
model_type = "pico_decoder"
|
| 575 |
+
|
| 576 |
+
@classmethod
|
| 577 |
+
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
|
| 578 |
+
"""
|
| 579 |
+
Initialize config from a dictionary. Note that no kwargs are passed to the constructor --
|
| 580 |
+
this is because with some kwargs special handling is required and can make this class
|
| 581 |
+
brittle.
|
| 582 |
+
"""
|
| 583 |
+
pico_config = cls(**config_dict)
|
| 584 |
+
|
| 585 |
+
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
| 586 |
+
unused_kwargs = {
|
| 587 |
+
key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
|
| 588 |
+
}
|
| 589 |
+
|
| 590 |
+
if return_unused_kwargs:
|
| 591 |
+
return pico_config, unused_kwargs
|
| 592 |
+
return pico_config
|
| 593 |
+
|
| 594 |
+
@classmethod
|
| 595 |
+
def from_dataclass(cls, model_config: "ModelConfig"):
|
| 596 |
+
"""Initialise from our custom config dataclass."""
|
| 597 |
+
return cls.from_dict(asdict(model_config))
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
class PicoDecoderHF(PreTrainedModel, GenerationMixin):
|
| 601 |
+
"""
|
| 602 |
+
HuggingFace wrapper for the Pico model with generation support.
|
| 603 |
+
|
| 604 |
+
Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
|
| 605 |
+
wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
|
| 606 |
+
Pico model as well as the model wrapped in this HuggingFace class.
|
| 607 |
+
|
| 608 |
+
This also lets you do cool things like:
|
| 609 |
+
|
| 610 |
+
`model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
|
| 611 |
+
"""
|
| 612 |
+
|
| 613 |
+
config_class = PicoDecoderHFConfig
|
| 614 |
+
_no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
|
| 615 |
+
main_input_name = "input_ids"
|
| 616 |
+
|
| 617 |
+
def __init__(self, config: PicoDecoderHFConfig):
|
| 618 |
+
super().__init__(config)
|
| 619 |
+
self.pico_decoder = PicoDecoder(config)
|
| 620 |
+
# Initialize generation config with defaults
|
| 621 |
+
self.generation_config = GenerationConfig()
|
| 622 |
+
# Set some reasonable defaults for the model
|
| 623 |
+
if hasattr(config, "max_position_embeddings"):
|
| 624 |
+
self.generation_config.max_length = config.max_position_embeddings
|
| 625 |
+
if hasattr(config, "vocab_size"):
|
| 626 |
+
self.generation_config.vocab_size = config.vocab_size
|
| 627 |
+
|
| 628 |
+
def forward(
|
| 629 |
+
self,
|
| 630 |
+
input_ids: torch.Tensor,
|
| 631 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 632 |
+
use_cache: bool = False,
|
| 633 |
+
**kwargs,
|
| 634 |
+
) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
|
| 635 |
+
"""HuggingFace forward pass wrapper.
|
| 636 |
+
|
| 637 |
+
Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
|
| 638 |
+
Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
|
| 639 |
+
"""
|
| 640 |
+
logits, past_key_values = self.pico_decoder(
|
| 641 |
+
input_ids, past_key_values, use_cache
|
| 642 |
+
)
|
| 643 |
+
if use_cache:
|
| 644 |
+
return CausalLMOutputWithPast(
|
| 645 |
+
logits=logits,
|
| 646 |
+
past_key_values=past_key_values,
|
| 647 |
+
)
|
| 648 |
+
else:
|
| 649 |
+
return CausalLMOutput(
|
| 650 |
+
logits=logits,
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
def prepare_inputs_for_generation(
|
| 654 |
+
self,
|
| 655 |
+
input_ids: torch.LongTensor,
|
| 656 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 657 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 658 |
+
**kwargs,
|
| 659 |
+
) -> Dict[str, Any]:
|
| 660 |
+
"""
|
| 661 |
+
Prepare inputs for generation.
|
| 662 |
+
|
| 663 |
+
Args:
|
| 664 |
+
input_ids: Input token IDs
|
| 665 |
+
past_key_values: Cached key-value pairs from previous forward passes
|
| 666 |
+
attention_mask: Attention mask for the input
|
| 667 |
+
**kwargs: Additional arguments
|
| 668 |
+
|
| 669 |
+
Returns:
|
| 670 |
+
Dictionary containing prepared inputs
|
| 671 |
+
"""
|
| 672 |
+
# If we have past_key_values, we only need the last token
|
| 673 |
+
if past_key_values is not None:
|
| 674 |
+
input_ids = input_ids[:, -1:]
|
| 675 |
+
|
| 676 |
+
return {
|
| 677 |
+
"input_ids": input_ids,
|
| 678 |
+
"past_key_values": past_key_values,
|
| 679 |
+
"use_cache": True,
|
| 680 |
+
}
|
| 681 |
+
|
| 682 |
+
def get_input_embeddings(self):
|
| 683 |
+
"""Get the input embeddings layer."""
|
| 684 |
+
return self.pico_decoder.embedding_proj
|
| 685 |
+
|
| 686 |
+
def set_input_embeddings(self, value):
|
| 687 |
+
"""Set the input embeddings layer."""
|
| 688 |
+
self.pico_decoder.embedding_proj = value
|
| 689 |
+
|
| 690 |
+
def get_output_embeddings(self):
|
| 691 |
+
"""Get the output embeddings layer."""
|
| 692 |
+
return self.pico_decoder.de_embedding_proj
|
| 693 |
+
|
| 694 |
+
def set_output_embeddings(self, value):
|
| 695 |
+
"""Set the output embeddings layer."""
|
| 696 |
+
self.pico_decoder.de_embedding_proj = value
|
| 697 |
+
|
| 698 |
+
def get_lm_head(self):
|
| 699 |
+
"""Get the language model head."""
|
| 700 |
+
return self.pico_decoder.de_embedding_proj
|
| 701 |
+
|
| 702 |
+
def can_generate(self) -> bool:
|
| 703 |
+
"""Check if the model can generate text."""
|
| 704 |
+
return True
|
| 705 |
+
|
| 706 |
+
@property
|
| 707 |
+
def is_encoder_decoder(self) -> bool:
|
| 708 |
+
"""Check if the model is an encoder-decoder model."""
|
| 709 |
+
return False
|
| 710 |
+
|
| 711 |
+
@property
|
| 712 |
+
def can_use_cache(self) -> bool:
|
| 713 |
+
"""Check if the model can use KV cache."""
|
| 714 |
+
return True
|
| 715 |
+
|
| 716 |
+
def resize_token_embeddings(
|
| 717 |
+
self, new_num_tokens: Optional[int] = None
|
| 718 |
+
) -> torch.nn.Embedding:
|
| 719 |
+
"""Resize token embeddings."""
|
| 720 |
+
old_embeddings = self.get_input_embeddings()
|
| 721 |
+
if new_num_tokens is None:
|
| 722 |
+
new_num_tokens = old_embeddings.num_embeddings
|
| 723 |
+
|
| 724 |
+
new_embeddings = torch.nn.Embedding(
|
| 725 |
+
new_num_tokens, old_embeddings.embedding_dim
|
| 726 |
+
)
|
| 727 |
+
new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
|
| 728 |
+
old_embeddings.weight.data
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
self.pico_decoder.embedding_proj = new_embeddings
|
| 732 |
+
self.pico_decoder.de_embedding_proj = torch.nn.Linear(
|
| 733 |
+
old_embeddings.embedding_dim, new_num_tokens, bias=False
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
return new_embeddings
|
| 737 |
+
|
| 738 |
+
|
| 739 |
+
# Register for auto classes
|
| 740 |
+
PicoDecoderHFConfig.register_for_auto_class()
|
| 741 |
+
PicoDecoderHF.register_for_auto_class("AutoModel")
|
| 742 |
+
PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
|
| 743 |
+
|
| 744 |
+
|
| 745 |
+
########################################################
|
| 746 |
+
#
|
| 747 |
+
# New PicoDecoderForCausalLM class for generation support
|
| 748 |
+
#
|
| 749 |
+
########################################################
|
| 750 |
+
|
| 751 |
+
|
| 752 |
+
class PicoDecoderForCausalLM(PreTrainedModel, GenerationMixin):
|
| 753 |
+
"""
|
| 754 |
+
PicoDecoderForCausalLM: A HuggingFace-compatible model that properly supports generation.
|
| 755 |
+
|
| 756 |
+
This class is designed to work with existing checkpoints and provides full generation support.
|
| 757 |
+
It inherits from the right base classes that HuggingFace expects for text generation.
|
| 758 |
+
"""
|
| 759 |
+
|
| 760 |
+
config_class = PicoDecoderHFConfig
|
| 761 |
+
_no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
|
| 762 |
+
main_input_name = "input_ids"
|
| 763 |
+
|
| 764 |
+
def __init__(self, config: PicoDecoderHFConfig):
|
| 765 |
+
super().__init__(config)
|
| 766 |
+
self.pico_decoder = PicoDecoder(config)
|
| 767 |
+
# Initialize generation config with defaults
|
| 768 |
+
self.generation_config = GenerationConfig()
|
| 769 |
+
# Set some reasonable defaults for the model
|
| 770 |
+
if hasattr(config, "max_position_embeddings"):
|
| 771 |
+
self.generation_config.max_length = config.max_position_embeddings
|
| 772 |
+
if hasattr(config, "vocab_size"):
|
| 773 |
+
self.generation_config.vocab_size = config.vocab_size
|
| 774 |
+
|
| 775 |
+
def forward(
|
| 776 |
+
self,
|
| 777 |
+
input_ids: torch.Tensor,
|
| 778 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 779 |
+
use_cache: bool = False,
|
| 780 |
+
**kwargs,
|
| 781 |
+
) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
|
| 782 |
+
"""Forward pass for text generation."""
|
| 783 |
+
logits, past_key_values = self.pico_decoder(
|
| 784 |
+
input_ids, past_key_values, use_cache
|
| 785 |
+
)
|
| 786 |
+
if use_cache:
|
| 787 |
+
return CausalLMOutputWithPast(
|
| 788 |
+
logits=logits,
|
| 789 |
+
past_key_values=past_key_values,
|
| 790 |
+
)
|
| 791 |
+
else:
|
| 792 |
+
return CausalLMOutput(
|
| 793 |
+
logits=logits,
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
+
def prepare_inputs_for_generation(
|
| 797 |
+
self,
|
| 798 |
+
input_ids: torch.LongTensor,
|
| 799 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 800 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 801 |
+
**kwargs,
|
| 802 |
+
) -> Dict[str, Any]:
|
| 803 |
+
"""Prepare inputs for generation."""
|
| 804 |
+
# If we have past_key_values, we only need the last token
|
| 805 |
+
if past_key_values is not None:
|
| 806 |
+
input_ids = input_ids[:, -1:]
|
| 807 |
+
|
| 808 |
+
return {
|
| 809 |
+
"input_ids": input_ids,
|
| 810 |
+
"past_key_values": past_key_values,
|
| 811 |
+
"use_cache": True,
|
| 812 |
+
}
|
| 813 |
+
|
| 814 |
+
def get_input_embeddings(self):
|
| 815 |
+
"""Get the input embeddings layer."""
|
| 816 |
+
return self.pico_decoder.embedding_proj
|
| 817 |
+
|
| 818 |
+
def set_input_embeddings(self, value):
|
| 819 |
+
"""Set the input embeddings layer."""
|
| 820 |
+
self.pico_decoder.embedding_proj = value
|
| 821 |
+
|
| 822 |
+
def get_output_embeddings(self):
|
| 823 |
+
"""Get the output embeddings layer."""
|
| 824 |
+
return self.pico_decoder.de_embedding_proj
|
| 825 |
+
|
| 826 |
+
def set_output_embeddings(self, value):
|
| 827 |
+
"""Set the output embeddings layer."""
|
| 828 |
+
self.pico_decoder.de_embedding_proj = value
|
| 829 |
+
|
| 830 |
+
def get_lm_head(self):
|
| 831 |
+
"""Get the language model head."""
|
| 832 |
+
return self.pico_decoder.de_embedding_proj
|
| 833 |
+
|
| 834 |
+
def can_generate(self) -> bool:
|
| 835 |
+
"""Check if the model can generate text."""
|
| 836 |
+
return True
|
| 837 |
+
|
| 838 |
+
@property
|
| 839 |
+
def is_encoder_decoder(self) -> bool:
|
| 840 |
+
"""Check if the model is an encoder-decoder model."""
|
| 841 |
+
return False
|
| 842 |
+
|
| 843 |
+
@property
|
| 844 |
+
def can_use_cache(self) -> bool:
|
| 845 |
+
"""Check if the model can use KV cache."""
|
| 846 |
+
return True
|
| 847 |
+
|
| 848 |
+
def resize_token_embeddings(
|
| 849 |
+
self, new_num_tokens: Optional[int] = None
|
| 850 |
+
) -> torch.nn.Embedding:
|
| 851 |
+
"""Resize token embeddings."""
|
| 852 |
+
old_embeddings = self.get_input_embeddings()
|
| 853 |
+
if new_num_tokens is None:
|
| 854 |
+
new_num_tokens = old_embeddings.num_embeddings
|
| 855 |
+
|
| 856 |
+
new_embeddings = torch.nn.Embedding(
|
| 857 |
+
new_num_tokens, old_embeddings.embedding_dim
|
| 858 |
+
)
|
| 859 |
+
new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
|
| 860 |
+
old_embeddings.weight.data
|
| 861 |
+
)
|
| 862 |
+
|
| 863 |
+
self.pico_decoder.embedding_proj = new_embeddings
|
| 864 |
+
self.pico_decoder.de_embedding_proj = torch.nn.Linear(
|
| 865 |
+
old_embeddings.embedding_dim, new_num_tokens, bias=False
|
| 866 |
+
)
|
| 867 |
+
|
| 868 |
+
return new_embeddings
|
| 869 |
+
|
| 870 |
+
@classmethod
|
| 871 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
| 872 |
+
"""
|
| 873 |
+
Load a pretrained model from a checkpoint.
|
| 874 |
+
|
| 875 |
+
This method handles loading from both the old PicoDecoderHF format and the new format.
|
| 876 |
+
"""
|
| 877 |
+
# First try to load with the new class
|
| 878 |
+
try:
|
| 879 |
+
return super().from_pretrained(
|
| 880 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
| 881 |
+
)
|
| 882 |
+
except Exception as e:
|
| 883 |
+
print(f"Failed to load with new class: {e}")
|
| 884 |
+
print("Attempting to load with legacy class and convert...")
|
| 885 |
+
|
| 886 |
+
# Try to load with the old class and convert
|
| 887 |
+
try:
|
| 888 |
+
from transformers import AutoModel
|
| 889 |
+
|
| 890 |
+
old_model = AutoModel.from_pretrained(
|
| 891 |
+
pretrained_model_name_or_path,
|
| 892 |
+
trust_remote_code=True,
|
| 893 |
+
*model_args,
|
| 894 |
+
**kwargs,
|
| 895 |
+
)
|
| 896 |
+
|
| 897 |
+
# Create new model instance
|
| 898 |
+
new_model = cls(old_model.config)
|
| 899 |
+
|
| 900 |
+
# Copy state dict
|
| 901 |
+
new_model.load_state_dict(old_model.state_dict(), strict=False)
|
| 902 |
+
|
| 903 |
+
return new_model
|
| 904 |
+
|
| 905 |
+
except Exception as e2:
|
| 906 |
+
print(f"Failed to convert from legacy format: {e2}")
|
| 907 |
+
raise e
|
| 908 |
+
|
| 909 |
+
|
| 910 |
+
# Register the new class
|
| 911 |
+
PicoDecoderForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/special_tokens_map.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token": {
|
| 3 |
+
"content": "<|endoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"pad_token": {
|
| 10 |
+
"content": "<|padding|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
}
|
| 16 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_0/tokenizer_config.json
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": false,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "|||IP_ADDRESS|||",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": true,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": false
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<|padding|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"50254": {
|
| 23 |
+
"content": " ",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": true,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": false
|
| 29 |
+
},
|
| 30 |
+
"50255": {
|
| 31 |
+
"content": " ",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": true,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": false
|
| 37 |
+
},
|
| 38 |
+
"50256": {
|
| 39 |
+
"content": " ",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": true,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": false
|
| 45 |
+
},
|
| 46 |
+
"50257": {
|
| 47 |
+
"content": " ",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": true,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": false
|
| 53 |
+
},
|
| 54 |
+
"50258": {
|
| 55 |
+
"content": " ",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": true,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": false
|
| 61 |
+
},
|
| 62 |
+
"50259": {
|
| 63 |
+
"content": " ",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": true,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": false
|
| 69 |
+
},
|
| 70 |
+
"50260": {
|
| 71 |
+
"content": " ",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": true,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": false
|
| 77 |
+
},
|
| 78 |
+
"50261": {
|
| 79 |
+
"content": " ",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": true,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": false
|
| 85 |
+
},
|
| 86 |
+
"50262": {
|
| 87 |
+
"content": " ",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": true,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": false
|
| 93 |
+
},
|
| 94 |
+
"50263": {
|
| 95 |
+
"content": " ",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": true,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": false
|
| 101 |
+
},
|
| 102 |
+
"50264": {
|
| 103 |
+
"content": " ",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": true,
|
| 106 |
+
"rstrip": false,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": false
|
| 109 |
+
},
|
| 110 |
+
"50265": {
|
| 111 |
+
"content": " ",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": true,
|
| 114 |
+
"rstrip": false,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": false
|
| 117 |
+
},
|
| 118 |
+
"50266": {
|
| 119 |
+
"content": " ",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": true,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false,
|
| 124 |
+
"special": false
|
| 125 |
+
},
|
| 126 |
+
"50267": {
|
| 127 |
+
"content": " ",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": true,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false,
|
| 132 |
+
"special": false
|
| 133 |
+
},
|
| 134 |
+
"50268": {
|
| 135 |
+
"content": " ",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": true,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false,
|
| 140 |
+
"special": false
|
| 141 |
+
},
|
| 142 |
+
"50269": {
|
| 143 |
+
"content": " ",
|
| 144 |
+
"lstrip": false,
|
| 145 |
+
"normalized": true,
|
| 146 |
+
"rstrip": false,
|
| 147 |
+
"single_word": false,
|
| 148 |
+
"special": false
|
| 149 |
+
},
|
| 150 |
+
"50270": {
|
| 151 |
+
"content": " ",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": true,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false,
|
| 156 |
+
"special": false
|
| 157 |
+
},
|
| 158 |
+
"50271": {
|
| 159 |
+
"content": " ",
|
| 160 |
+
"lstrip": false,
|
| 161 |
+
"normalized": true,
|
| 162 |
+
"rstrip": false,
|
| 163 |
+
"single_word": false,
|
| 164 |
+
"special": false
|
| 165 |
+
},
|
| 166 |
+
"50272": {
|
| 167 |
+
"content": " ",
|
| 168 |
+
"lstrip": false,
|
| 169 |
+
"normalized": true,
|
| 170 |
+
"rstrip": false,
|
| 171 |
+
"single_word": false,
|
| 172 |
+
"special": false
|
| 173 |
+
},
|
| 174 |
+
"50273": {
|
| 175 |
+
"content": " ",
|
| 176 |
+
"lstrip": false,
|
| 177 |
+
"normalized": true,
|
| 178 |
+
"rstrip": false,
|
| 179 |
+
"single_word": false,
|
| 180 |
+
"special": false
|
| 181 |
+
},
|
| 182 |
+
"50274": {
|
| 183 |
+
"content": " ",
|
| 184 |
+
"lstrip": false,
|
| 185 |
+
"normalized": true,
|
| 186 |
+
"rstrip": false,
|
| 187 |
+
"single_word": false,
|
| 188 |
+
"special": false
|
| 189 |
+
},
|
| 190 |
+
"50275": {
|
| 191 |
+
"content": " ",
|
| 192 |
+
"lstrip": false,
|
| 193 |
+
"normalized": true,
|
| 194 |
+
"rstrip": false,
|
| 195 |
+
"single_word": false,
|
| 196 |
+
"special": false
|
| 197 |
+
},
|
| 198 |
+
"50276": {
|
| 199 |
+
"content": " ",
|
| 200 |
+
"lstrip": false,
|
| 201 |
+
"normalized": true,
|
| 202 |
+
"rstrip": false,
|
| 203 |
+
"single_word": false,
|
| 204 |
+
"special": false
|
| 205 |
+
},
|
| 206 |
+
"50277": {
|
| 207 |
+
"content": "|||EMAIL_ADDRESS|||",
|
| 208 |
+
"lstrip": false,
|
| 209 |
+
"normalized": true,
|
| 210 |
+
"rstrip": false,
|
| 211 |
+
"single_word": false,
|
| 212 |
+
"special": false
|
| 213 |
+
},
|
| 214 |
+
"50278": {
|
| 215 |
+
"content": "|||PHONE_NUMBER|||",
|
| 216 |
+
"lstrip": false,
|
| 217 |
+
"normalized": true,
|
| 218 |
+
"rstrip": false,
|
| 219 |
+
"single_word": false,
|
| 220 |
+
"special": false
|
| 221 |
+
},
|
| 222 |
+
"50279": {
|
| 223 |
+
"content": "<|endoftext|>",
|
| 224 |
+
"lstrip": false,
|
| 225 |
+
"normalized": false,
|
| 226 |
+
"rstrip": false,
|
| 227 |
+
"single_word": false,
|
| 228 |
+
"special": true
|
| 229 |
+
}
|
| 230 |
+
},
|
| 231 |
+
"bos_token": null,
|
| 232 |
+
"clean_up_tokenization_spaces": true,
|
| 233 |
+
"eos_token": "<|endoftext|>",
|
| 234 |
+
"extra_special_tokens": {},
|
| 235 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 236 |
+
"pad_token": "<|padding|>",
|
| 237 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
| 238 |
+
"unk_token": null
|
| 239 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/config.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation_hidden_dim": 384,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"PicoDecoderHF"
|
| 5 |
+
],
|
| 6 |
+
"attention_n_heads": 12,
|
| 7 |
+
"attention_n_kv_heads": 4,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "pico_decoder.PicoDecoderHFConfig",
|
| 10 |
+
"AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
|
| 11 |
+
},
|
| 12 |
+
"batch_size": 1024,
|
| 13 |
+
"d_model": 96,
|
| 14 |
+
"max_seq_len": 2048,
|
| 15 |
+
"model_type": "pico_decoder",
|
| 16 |
+
"n_layers": 12,
|
| 17 |
+
"norm_eps": 1e-06,
|
| 18 |
+
"position_emb_theta": 10000.0,
|
| 19 |
+
"torch_dtype": "float32",
|
| 20 |
+
"transformers_version": "4.48.3",
|
| 21 |
+
"vocab_size": 50304
|
| 22 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/fabric_state/checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:92fa51a0afd806b08b0d199e7d2ff4555923904d7ef132046182de3335c38e8e
|
| 3 |
+
size 135543171
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"transformers_version": "4.48.3",
|
| 3 |
+
"vocab_size": 50304
|
| 4 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_activations.pt
ADDED
|
Binary file (98.3 kB). View file
|
|
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_data/data-00000-of-00001.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7dc168d01315589299bb5c8857c28a085e3fef703290a2b99d551bc33a6fdf0
|
| 3 |
+
size 277160
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_data/dataset_info.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"citation": "",
|
| 3 |
+
"description": "",
|
| 4 |
+
"features": {
|
| 5 |
+
"input_ids": {
|
| 6 |
+
"feature": {
|
| 7 |
+
"dtype": "int32",
|
| 8 |
+
"_type": "Value"
|
| 9 |
+
},
|
| 10 |
+
"_type": "Sequence"
|
| 11 |
+
},
|
| 12 |
+
"text": {
|
| 13 |
+
"dtype": "string",
|
| 14 |
+
"_type": "Value"
|
| 15 |
+
}
|
| 16 |
+
},
|
| 17 |
+
"homepage": "",
|
| 18 |
+
"license": ""
|
| 19 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_data/state.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_data_files": [
|
| 3 |
+
{
|
| 4 |
+
"filename": "data-00000-of-00001.arrow"
|
| 5 |
+
}
|
| 6 |
+
],
|
| 7 |
+
"_fingerprint": "1d11f8d9010f1e26",
|
| 8 |
+
"_format_columns": null,
|
| 9 |
+
"_format_kwargs": {},
|
| 10 |
+
"_format_type": null,
|
| 11 |
+
"_output_all_columns": false,
|
| 12 |
+
"_split": null
|
| 13 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_gradients.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:067570bee041e27414f53e1579b8269c0122124602a4b61263453baed7b22cb9
|
| 3 |
+
size 2371527
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/learning_dynamics/train_weights.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ca9e9ed20e2ee9b41c6999b5300990a19c499db05b6dcf0de03c17627480f2b5
|
| 3 |
+
size 2371443
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:594904d9e9d616c61f90057c2e32dfd5323b1994996434891eacb57abf9193f1
|
| 3 |
+
size 45143592
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/pico_decoder.py
ADDED
|
@@ -0,0 +1,911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Pico Decoder: A Lightweight Causal Transformer Language Model
|
| 3 |
+
|
| 4 |
+
Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
|
| 5 |
+
|
| 6 |
+
Everything is written with a modular design for easy modification and experimentation.
|
| 7 |
+
|
| 8 |
+
Key features:
|
| 9 |
+
- RMSNorm for layer normalization
|
| 10 |
+
- Rotary Positional Embeddings (RoPE)
|
| 11 |
+
- Multi-head attention with KV-cache support
|
| 12 |
+
- SwiGLU activation function
|
| 13 |
+
- Residual connections throughout
|
| 14 |
+
|
| 15 |
+
- KV-cache for faster autoregressive generation
|
| 16 |
+
|
| 17 |
+
References:
|
| 18 |
+
- RoPE: https://arxiv.org/abs/2104.09864
|
| 19 |
+
- SwiGLU: https://arxiv.org/abs/2002.05202
|
| 20 |
+
- LLAMA: https://arxiv.org/abs/2302.13971
|
| 21 |
+
|
| 22 |
+
Adapted from:
|
| 23 |
+
- OLMO: https://github.com/allenai/OLMo
|
| 24 |
+
- LLAMA: https://github.com/meta/llama
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
from dataclasses import asdict
|
| 28 |
+
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
|
| 29 |
+
|
| 30 |
+
import torch
|
| 31 |
+
import torch.nn as nn
|
| 32 |
+
import torch.nn.functional as F
|
| 33 |
+
|
| 34 |
+
# Handle PyTorch version compatibility for attention backend
|
| 35 |
+
try:
|
| 36 |
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
| 37 |
+
|
| 38 |
+
HAS_TORCH_ATTENTION = True
|
| 39 |
+
except ImportError:
|
| 40 |
+
# Fallback for older PyTorch versions
|
| 41 |
+
HAS_TORCH_ATTENTION = False
|
| 42 |
+
SDPBackend = None
|
| 43 |
+
sdpa_kernel = None
|
| 44 |
+
|
| 45 |
+
from transformers import GenerationMixin, PretrainedConfig, PreTrainedModel
|
| 46 |
+
from transformers.generation import GenerationConfig
|
| 47 |
+
from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
|
| 48 |
+
|
| 49 |
+
try:
|
| 50 |
+
if TYPE_CHECKING:
|
| 51 |
+
# We need to do this to avoid importing these when creating the HF-compatible models
|
| 52 |
+
from src.config import ModelConfig
|
| 53 |
+
except ImportError:
|
| 54 |
+
pass
|
| 55 |
+
|
| 56 |
+
########################################################
|
| 57 |
+
#
|
| 58 |
+
# Layer Normalization
|
| 59 |
+
#
|
| 60 |
+
########################################################
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class RMSNorm(torch.nn.Module):
|
| 64 |
+
"""Root Mean Square Layer Normalization.
|
| 65 |
+
|
| 66 |
+
A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
|
| 67 |
+
resulting in improved stability and performance.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
|
| 71 |
+
- config.norm_eps: Small constant for numerical stability
|
| 72 |
+
- config.d_model: Model dimension for the weight parameter
|
| 73 |
+
|
| 74 |
+
References:
|
| 75 |
+
https://arxiv.org/abs/1910.07467
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
|
| 79 |
+
super().__init__()
|
| 80 |
+
self.eps = config.norm_eps
|
| 81 |
+
self.weight = nn.Parameter(torch.ones(config.d_model))
|
| 82 |
+
|
| 83 |
+
def _norm(self, x: torch.Tensor) -> torch.Tensor:
|
| 84 |
+
"""
|
| 85 |
+
Normalizes the input tensor by its RMS value.
|
| 86 |
+
"""
|
| 87 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 88 |
+
|
| 89 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 90 |
+
"""
|
| 91 |
+
Applies RMS normalization to the input tensor and scales it by the weight parameter.
|
| 92 |
+
"""
|
| 93 |
+
output = self._norm(x.float()).type_as(x)
|
| 94 |
+
return output * self.weight
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
########################################################
|
| 98 |
+
#
|
| 99 |
+
# Positional Embedding
|
| 100 |
+
#
|
| 101 |
+
########################################################
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class RoPE(nn.Module):
|
| 105 |
+
"""Rotary Positional Embeddings (RoPE).
|
| 106 |
+
|
| 107 |
+
Implements position-dependent rotation of keys and queries in attention mechanism,
|
| 108 |
+
allowing better modeling of relative positions in sequences. Uses complex number
|
| 109 |
+
operations for efficient rotation.
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
|
| 113 |
+
- config.position_emb_theta: Base for frequency computation
|
| 114 |
+
- config.d_model: Model dimension
|
| 115 |
+
- config.attention_n_heads: Number of attention heads
|
| 116 |
+
- config.max_seq_len: Maximum sequence length
|
| 117 |
+
|
| 118 |
+
References:
|
| 119 |
+
https://arxiv.org/abs/2104.09864
|
| 120 |
+
"""
|
| 121 |
+
|
| 122 |
+
_freqs_cis_tensor: torch.Tensor | None = None
|
| 123 |
+
|
| 124 |
+
def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
|
| 125 |
+
super().__init__()
|
| 126 |
+
|
| 127 |
+
self.theta = config.position_emb_theta
|
| 128 |
+
self.dim = config.d_model // config.attention_n_heads
|
| 129 |
+
|
| 130 |
+
max_seq_len = config.max_seq_len
|
| 131 |
+
|
| 132 |
+
# only gets set once, and then reused for all RoPE instances
|
| 133 |
+
if RoPE._freqs_cis_tensor is None:
|
| 134 |
+
RoPE._freqs_cis_tensor = self._setup_freqs_cis(
|
| 135 |
+
max_seq_len, self.theta, self.dim
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# register _freqs_cis buffer
|
| 139 |
+
# can be easily recomputed so persistent=False
|
| 140 |
+
self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
|
| 141 |
+
|
| 142 |
+
@classmethod
|
| 143 |
+
def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
|
| 144 |
+
"""Setup Frequency Tensor for RoPE Embeddings
|
| 145 |
+
|
| 146 |
+
Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
|
| 147 |
+
|
| 148 |
+
Note other implementations will use cos and sin directly, but using the complex
|
| 149 |
+
number representation is (probably) more efficient:
|
| 150 |
+
|
| 151 |
+
e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
|
| 152 |
+
"""
|
| 153 |
+
_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
| 154 |
+
positions = torch.arange(seq_len)
|
| 155 |
+
freqs = torch.outer(positions, _freqs)
|
| 156 |
+
return torch.polar(torch.ones_like(freqs), freqs) # complex64
|
| 157 |
+
|
| 158 |
+
def get_freqs_cis(
|
| 159 |
+
self, input_shape: torch.Size, start_pos: int, end_pos: int
|
| 160 |
+
) -> torch.Tensor:
|
| 161 |
+
"""Reshape Frequency Tensor for RoPE Embeddings
|
| 162 |
+
|
| 163 |
+
Makes the frequency tensor broadcastable with the input tensor.
|
| 164 |
+
"""
|
| 165 |
+
_freqs_cis = self._freqs_cis[start_pos:end_pos]
|
| 166 |
+
ndim = len(input_shape)
|
| 167 |
+
assert 0 <= 1 < ndim
|
| 168 |
+
assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
|
| 169 |
+
|
| 170 |
+
# TODO: Check whether this is correct (might be able to remove this)
|
| 171 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
|
| 172 |
+
return _freqs_cis.view(*shape)
|
| 173 |
+
|
| 174 |
+
def forward(
|
| 175 |
+
self,
|
| 176 |
+
queries: torch.Tensor,
|
| 177 |
+
keys: torch.Tensor,
|
| 178 |
+
start_pos: int = 0,
|
| 179 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 180 |
+
"""Apply RoPE Embeddings to Queries and Keys
|
| 181 |
+
|
| 182 |
+
Applies the rotary positional embeddings to the input tensors via complex num multiplication
|
| 183 |
+
|
| 184 |
+
NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
|
| 185 |
+
"""
|
| 186 |
+
queries_ = torch.view_as_complex(
|
| 187 |
+
queries.float().reshape(*queries.shape[:-1], -1, 2)
|
| 188 |
+
)
|
| 189 |
+
keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
|
| 190 |
+
|
| 191 |
+
input_shape = (
|
| 192 |
+
queries_.shape
|
| 193 |
+
) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
|
| 194 |
+
freqs_start_pos = start_pos
|
| 195 |
+
freqs_end_pos = freqs_start_pos + queries_.shape[1]
|
| 196 |
+
|
| 197 |
+
freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
|
| 198 |
+
|
| 199 |
+
queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
|
| 200 |
+
keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
|
| 201 |
+
return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
########################################################
|
| 205 |
+
#
|
| 206 |
+
# Attention
|
| 207 |
+
#
|
| 208 |
+
########################################################
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class Attention(nn.Module):
|
| 212 |
+
"""Multi-head Attention with Group Query Attention support.
|
| 213 |
+
|
| 214 |
+
Implements scaled dot-product attention and supports:
|
| 215 |
+
- Grouped Query Attention (GQA)
|
| 216 |
+
- Key-Value caching for efficient inference
|
| 217 |
+
- RoPE integration
|
| 218 |
+
|
| 219 |
+
Args:
|
| 220 |
+
config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
|
| 221 |
+
- config.attention_n_heads: Number of attention heads
|
| 222 |
+
- config.attention_n_kv_heads: Number of key/value heads
|
| 223 |
+
- config.d_model: Model dimension
|
| 224 |
+
- config.batch_size: Maximum batch size
|
| 225 |
+
- config.max_seq_len: Maximum sequence length
|
| 226 |
+
|
| 227 |
+
Shape:
|
| 228 |
+
- Input: (batch_size, seq_len, d_model)
|
| 229 |
+
- Output: (batch_size, seq_len, d_model)
|
| 230 |
+
"""
|
| 231 |
+
|
| 232 |
+
def __init__(
|
| 233 |
+
self,
|
| 234 |
+
config: Union["ModelConfig", "PicoDecoderHFConfig"],
|
| 235 |
+
):
|
| 236 |
+
super().__init__()
|
| 237 |
+
|
| 238 |
+
self.n_heads = config.attention_n_heads
|
| 239 |
+
self.n_kv_heads = config.attention_n_kv_heads
|
| 240 |
+
|
| 241 |
+
self.batch_size = config.batch_size
|
| 242 |
+
self.max_seq_len = config.max_seq_len
|
| 243 |
+
|
| 244 |
+
d_model = config.d_model
|
| 245 |
+
self.head_dim = d_model // self.n_heads
|
| 246 |
+
|
| 247 |
+
self.n_rep = self.n_heads // self.n_kv_heads
|
| 248 |
+
|
| 249 |
+
self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
|
| 250 |
+
self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
|
| 251 |
+
self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
|
| 252 |
+
self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
|
| 253 |
+
|
| 254 |
+
self.rope = RoPE(config)
|
| 255 |
+
|
| 256 |
+
def forward(
|
| 257 |
+
self,
|
| 258 |
+
input: torch.Tensor,
|
| 259 |
+
mask: Optional[torch.Tensor] = None,
|
| 260 |
+
past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
|
| 261 |
+
use_cache: bool = False,
|
| 262 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
| 263 |
+
"""Forward pass for the attention mechanism.
|
| 264 |
+
|
| 265 |
+
Computes queries, keys, and values for the attention mechanism. Applies rotary positional
|
| 266 |
+
embeddings to the queries and keys, and then computes attention scores and outputs.
|
| 267 |
+
|
| 268 |
+
For an introduction to the attention mechanism, see:
|
| 269 |
+
https://arxiv.org/abs/1706.03762
|
| 270 |
+
|
| 271 |
+
A few things to note:
|
| 272 |
+
- The past_key_values is used to implement the KV cache, which is used to speed up
|
| 273 |
+
generation by caching the KV pairs from previous forward passes. This is useful when doing
|
| 274 |
+
tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
|
| 275 |
+
modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
|
| 276 |
+
its own KV cache - this KV cache is implemented as a tuple.
|
| 277 |
+
"""
|
| 278 |
+
bsz, seq_len, _ = input.shape
|
| 279 |
+
_queries, _keys, _values = (
|
| 280 |
+
self.q_proj(input),
|
| 281 |
+
self.k_proj(input),
|
| 282 |
+
self.v_proj(input),
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
# Reshaping for multi-head attention
|
| 286 |
+
queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
|
| 287 |
+
keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
|
| 288 |
+
values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
|
| 289 |
+
|
| 290 |
+
# The start position is used to apply the RoPE embeddings to only the new tokens
|
| 291 |
+
# when using the kv_cache in the attention mechanism.
|
| 292 |
+
# We want to start from the last position in the cache.
|
| 293 |
+
start_pos = 0
|
| 294 |
+
if past_key_values is not None and past_key_values[0] is not None:
|
| 295 |
+
start_pos = past_key_values[0].shape[1]
|
| 296 |
+
|
| 297 |
+
# apply rotary positional embeddings
|
| 298 |
+
queries, keys = self.rope(queries, keys, start_pos)
|
| 299 |
+
|
| 300 |
+
if (
|
| 301 |
+
past_key_values is not None
|
| 302 |
+
and past_key_values[0] is not None
|
| 303 |
+
and past_key_values[1] is not None
|
| 304 |
+
):
|
| 305 |
+
keys = torch.cat([past_key_values[0], keys], dim=1)
|
| 306 |
+
values = torch.cat([past_key_values[1], values], dim=1)
|
| 307 |
+
|
| 308 |
+
if use_cache:
|
| 309 |
+
cached_keys = keys
|
| 310 |
+
cached_values = values
|
| 311 |
+
else:
|
| 312 |
+
cached_keys = None
|
| 313 |
+
cached_values = None
|
| 314 |
+
|
| 315 |
+
queries = queries.transpose(1, 2)
|
| 316 |
+
keys = keys.transpose(1, 2)
|
| 317 |
+
values = values.transpose(1, 2)
|
| 318 |
+
|
| 319 |
+
apply_gqa = self.n_rep > 1
|
| 320 |
+
if apply_gqa and queries.device.type == "mps":
|
| 321 |
+
# NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
|
| 322 |
+
# outside of the kernel to get the same effect.
|
| 323 |
+
# See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
|
| 324 |
+
keys = keys.repeat_interleave(self.n_rep, dim=-3)
|
| 325 |
+
values = values.repeat_interleave(self.n_rep, dim=-3)
|
| 326 |
+
apply_gqa = False
|
| 327 |
+
|
| 328 |
+
if HAS_TORCH_ATTENTION:
|
| 329 |
+
backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
|
| 330 |
+
with sdpa_kernel(backends=backends):
|
| 331 |
+
attn_output = F.scaled_dot_product_attention(
|
| 332 |
+
queries.contiguous(),
|
| 333 |
+
keys.contiguous(),
|
| 334 |
+
values.contiguous(),
|
| 335 |
+
attn_mask=mask.to(queries.dtype) if mask is not None else None,
|
| 336 |
+
enable_gqa=apply_gqa,
|
| 337 |
+
)
|
| 338 |
+
else:
|
| 339 |
+
# Fallback for older PyTorch versions - use default backend
|
| 340 |
+
attn_output = F.scaled_dot_product_attention(
|
| 341 |
+
queries.contiguous(),
|
| 342 |
+
keys.contiguous(),
|
| 343 |
+
values.contiguous(),
|
| 344 |
+
attn_mask=mask.to(queries.dtype) if mask is not None else None,
|
| 345 |
+
enable_gqa=apply_gqa,
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
|
| 349 |
+
output = self.o_proj(attn_output)
|
| 350 |
+
|
| 351 |
+
return output, (cached_keys, cached_values)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
########################################################
|
| 355 |
+
#
|
| 356 |
+
# SwiGLU (Combines MLP and Activation)
|
| 357 |
+
#
|
| 358 |
+
########################################################
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
class SwiGLU(nn.Module):
|
| 362 |
+
"""SwiGLU Activation Function with Linear Projections.
|
| 363 |
+
|
| 364 |
+
Implements the SwiGLU activation function combined with linear transformations,
|
| 365 |
+
serving as the feed-forward network in transformer blocks.
|
| 366 |
+
|
| 367 |
+
Args:
|
| 368 |
+
config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
|
| 369 |
+
- config.d_model: Model dimension
|
| 370 |
+
- config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
|
| 371 |
+
|
| 372 |
+
References:
|
| 373 |
+
https://arxiv.org/abs/2002.05202
|
| 374 |
+
"""
|
| 375 |
+
|
| 376 |
+
def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
|
| 377 |
+
super().__init__()
|
| 378 |
+
|
| 379 |
+
model_dim = config.d_model
|
| 380 |
+
act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
|
| 381 |
+
|
| 382 |
+
self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
|
| 383 |
+
self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
|
| 384 |
+
self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
|
| 385 |
+
|
| 386 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 387 |
+
return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
########################################################
|
| 391 |
+
#
|
| 392 |
+
# PicoDecoderBlock
|
| 393 |
+
#
|
| 394 |
+
########################################################
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
class PicoDecoderBlock(nn.Module):
|
| 398 |
+
"""Single Transformer Block with Attention and Feed-forward layers.
|
| 399 |
+
|
| 400 |
+
Implements a standard transformer block with:
|
| 401 |
+
- Multi-head attention with normalization and residual connection
|
| 402 |
+
- SwiGLU feed-forward network with normalization and residual connection
|
| 403 |
+
|
| 404 |
+
Args:
|
| 405 |
+
config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
|
| 406 |
+
a HuggingFace PicoDecoderHFConfig
|
| 407 |
+
"""
|
| 408 |
+
|
| 409 |
+
def __init__(
|
| 410 |
+
self,
|
| 411 |
+
config: Union["ModelConfig", "PicoDecoderHFConfig"],
|
| 412 |
+
):
|
| 413 |
+
super().__init__()
|
| 414 |
+
|
| 415 |
+
self.attention = Attention(config)
|
| 416 |
+
self.swiglu = SwiGLU(config)
|
| 417 |
+
self.attention_norm = RMSNorm(config)
|
| 418 |
+
self.swiglu_norm = RMSNorm(config)
|
| 419 |
+
|
| 420 |
+
def forward(
|
| 421 |
+
self,
|
| 422 |
+
input: torch.Tensor,
|
| 423 |
+
mask: Optional[torch.Tensor] = None,
|
| 424 |
+
past_key_values: Optional[Tuple[torch.Tensor]] = None,
|
| 425 |
+
use_cache: bool = False,
|
| 426 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
| 427 |
+
attention_output, cached_key_values = self.attention(
|
| 428 |
+
self.attention_norm(input),
|
| 429 |
+
mask=mask,
|
| 430 |
+
past_key_values=past_key_values,
|
| 431 |
+
use_cache=use_cache,
|
| 432 |
+
)
|
| 433 |
+
# NOTE: cached_key_values is None if use_cache is False
|
| 434 |
+
|
| 435 |
+
h = input + attention_output
|
| 436 |
+
out = h + self.swiglu(self.swiglu_norm(h))
|
| 437 |
+
return out, cached_key_values
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
########################################################
|
| 441 |
+
#
|
| 442 |
+
# Pico Decoder (Causal Transformer Model)
|
| 443 |
+
#
|
| 444 |
+
########################################################
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
class PicoDecoder(nn.Module):
|
| 448 |
+
"""
|
| 449 |
+
Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
|
| 450 |
+
single autoregressive model.
|
| 451 |
+
|
| 452 |
+
For more information on the model, see the classes for the modules that make up the model.
|
| 453 |
+
"""
|
| 454 |
+
|
| 455 |
+
def __init__(
|
| 456 |
+
self,
|
| 457 |
+
model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
|
| 458 |
+
):
|
| 459 |
+
super().__init__()
|
| 460 |
+
self.config = model_config
|
| 461 |
+
|
| 462 |
+
self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
|
| 463 |
+
self.layers = nn.ModuleList(
|
| 464 |
+
[PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
|
| 465 |
+
)
|
| 466 |
+
self.output_norm = RMSNorm(self.config)
|
| 467 |
+
self.de_embedding_proj = nn.Linear(
|
| 468 |
+
self.config.d_model, self.config.vocab_size, bias=False
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
def convert_to_hf_model(self) -> "PicoDecoderHF":
|
| 472 |
+
"""Convert the Lightning model to a HuggingFace model."""
|
| 473 |
+
# Create HF config without fabric-specific settings
|
| 474 |
+
hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
|
| 475 |
+
|
| 476 |
+
# Create new HF model
|
| 477 |
+
hf_model = PicoDecoderHF(hf_config)
|
| 478 |
+
|
| 479 |
+
# Copy state dict, excluding fabric-specific keys
|
| 480 |
+
hf_model.load_state_dict(self.state_dict(prefix="pico_decoder."))
|
| 481 |
+
|
| 482 |
+
return hf_model
|
| 483 |
+
|
| 484 |
+
def forward(
|
| 485 |
+
self,
|
| 486 |
+
input_ids: torch.Tensor,
|
| 487 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 488 |
+
use_cache: bool = False,
|
| 489 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
|
| 490 |
+
"""
|
| 491 |
+
This is the forward pass for the entire Pico model. It boils down to:
|
| 492 |
+
- Embedding the input ids
|
| 493 |
+
- Creating a causal mask
|
| 494 |
+
- Processing through the pico layers
|
| 495 |
+
- Projecting the output to logits
|
| 496 |
+
|
| 497 |
+
NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
|
| 498 |
+
generation by caching the KV pairs from previous forward passes. This is useful when doing
|
| 499 |
+
tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
|
| 500 |
+
modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
|
| 501 |
+
its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
|
| 502 |
+
KV caches (so a tuple of tuples).
|
| 503 |
+
"""
|
| 504 |
+
|
| 505 |
+
seq_len = input_ids.shape[-1]
|
| 506 |
+
h = self.embedding_proj(input_ids)
|
| 507 |
+
|
| 508 |
+
# Calculate start position from past cached KV pairs. Remember that each layer has its
|
| 509 |
+
# own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
|
| 510 |
+
# correct layer and then for either the keys or values.
|
| 511 |
+
start_pos = 0
|
| 512 |
+
if (
|
| 513 |
+
past_key_values is not None
|
| 514 |
+
and past_key_values[0] is not None
|
| 515 |
+
and past_key_values[0][0] is not None
|
| 516 |
+
):
|
| 517 |
+
start_pos = past_key_values[0][0].shape[1]
|
| 518 |
+
|
| 519 |
+
# Create causal mask for current sequence
|
| 520 |
+
mask = None
|
| 521 |
+
if seq_len > 1:
|
| 522 |
+
mask = torch.full((seq_len, seq_len), float("-inf"))
|
| 523 |
+
mask = torch.triu(mask, diagonal=1)
|
| 524 |
+
|
| 525 |
+
# If using KV cache, extend mask to cover cached sequence length
|
| 526 |
+
if past_key_values is not None:
|
| 527 |
+
# Add zeros for cached tokens (we can attend to all of them)
|
| 528 |
+
mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
|
| 529 |
+
|
| 530 |
+
mask = mask.to(h.device)
|
| 531 |
+
|
| 532 |
+
# NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
|
| 533 |
+
# in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
|
| 534 |
+
cached_key_values = () if use_cache else None
|
| 535 |
+
|
| 536 |
+
# Process through transformer blocks
|
| 537 |
+
for idx, layer in enumerate(self.layers):
|
| 538 |
+
layer_past_key_values = None
|
| 539 |
+
if past_key_values is not None:
|
| 540 |
+
try:
|
| 541 |
+
# Handle both tuple-based cache and HuggingFace cache objects
|
| 542 |
+
if hasattr(past_key_values, "__getitem__") and idx < len(
|
| 543 |
+
past_key_values
|
| 544 |
+
):
|
| 545 |
+
layer_past_key_values = past_key_values[idx]
|
| 546 |
+
except (KeyError, IndexError, TypeError):
|
| 547 |
+
# If we can't access the cache properly, just skip it
|
| 548 |
+
layer_past_key_values = None
|
| 549 |
+
|
| 550 |
+
h, layer_cached_key_values = layer(
|
| 551 |
+
h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
if use_cache:
|
| 555 |
+
cached_key_values += (layer_cached_key_values,)
|
| 556 |
+
|
| 557 |
+
# Final norm and projection
|
| 558 |
+
h = self.output_norm(h)
|
| 559 |
+
logits = self.de_embedding_proj(h).float()
|
| 560 |
+
|
| 561 |
+
return logits, cached_key_values
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
########################################################
|
| 565 |
+
#
|
| 566 |
+
# HuggingFace Wrapper for the Pico Decoder model.
|
| 567 |
+
#
|
| 568 |
+
########################################################
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
class PicoDecoderHFConfig(PretrainedConfig):
|
| 572 |
+
"""Config class for the Pico Decoder HuggingFace wrapper."""
|
| 573 |
+
|
| 574 |
+
model_type = "pico_decoder"
|
| 575 |
+
|
| 576 |
+
@classmethod
|
| 577 |
+
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
|
| 578 |
+
"""
|
| 579 |
+
Initialize config from a dictionary. Note that no kwargs are passed to the constructor --
|
| 580 |
+
this is because with some kwargs special handling is required and can make this class
|
| 581 |
+
brittle.
|
| 582 |
+
"""
|
| 583 |
+
pico_config = cls(**config_dict)
|
| 584 |
+
|
| 585 |
+
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
| 586 |
+
unused_kwargs = {
|
| 587 |
+
key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
|
| 588 |
+
}
|
| 589 |
+
|
| 590 |
+
if return_unused_kwargs:
|
| 591 |
+
return pico_config, unused_kwargs
|
| 592 |
+
return pico_config
|
| 593 |
+
|
| 594 |
+
@classmethod
|
| 595 |
+
def from_dataclass(cls, model_config: "ModelConfig"):
|
| 596 |
+
"""Initialise from our custom config dataclass."""
|
| 597 |
+
return cls.from_dict(asdict(model_config))
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
class PicoDecoderHF(PreTrainedModel, GenerationMixin):
|
| 601 |
+
"""
|
| 602 |
+
HuggingFace wrapper for the Pico model with generation support.
|
| 603 |
+
|
| 604 |
+
Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
|
| 605 |
+
wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
|
| 606 |
+
Pico model as well as the model wrapped in this HuggingFace class.
|
| 607 |
+
|
| 608 |
+
This also lets you do cool things like:
|
| 609 |
+
|
| 610 |
+
`model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
|
| 611 |
+
"""
|
| 612 |
+
|
| 613 |
+
config_class = PicoDecoderHFConfig
|
| 614 |
+
_no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
|
| 615 |
+
main_input_name = "input_ids"
|
| 616 |
+
|
| 617 |
+
def __init__(self, config: PicoDecoderHFConfig):
|
| 618 |
+
super().__init__(config)
|
| 619 |
+
self.pico_decoder = PicoDecoder(config)
|
| 620 |
+
# Initialize generation config with defaults
|
| 621 |
+
self.generation_config = GenerationConfig()
|
| 622 |
+
# Set some reasonable defaults for the model
|
| 623 |
+
if hasattr(config, "max_position_embeddings"):
|
| 624 |
+
self.generation_config.max_length = config.max_position_embeddings
|
| 625 |
+
if hasattr(config, "vocab_size"):
|
| 626 |
+
self.generation_config.vocab_size = config.vocab_size
|
| 627 |
+
|
| 628 |
+
def forward(
|
| 629 |
+
self,
|
| 630 |
+
input_ids: torch.Tensor,
|
| 631 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 632 |
+
use_cache: bool = False,
|
| 633 |
+
**kwargs,
|
| 634 |
+
) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
|
| 635 |
+
"""HuggingFace forward pass wrapper.
|
| 636 |
+
|
| 637 |
+
Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
|
| 638 |
+
Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
|
| 639 |
+
"""
|
| 640 |
+
logits, past_key_values = self.pico_decoder(
|
| 641 |
+
input_ids, past_key_values, use_cache
|
| 642 |
+
)
|
| 643 |
+
if use_cache:
|
| 644 |
+
return CausalLMOutputWithPast(
|
| 645 |
+
logits=logits,
|
| 646 |
+
past_key_values=past_key_values,
|
| 647 |
+
)
|
| 648 |
+
else:
|
| 649 |
+
return CausalLMOutput(
|
| 650 |
+
logits=logits,
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
def prepare_inputs_for_generation(
|
| 654 |
+
self,
|
| 655 |
+
input_ids: torch.LongTensor,
|
| 656 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 657 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 658 |
+
**kwargs,
|
| 659 |
+
) -> Dict[str, Any]:
|
| 660 |
+
"""
|
| 661 |
+
Prepare inputs for generation.
|
| 662 |
+
|
| 663 |
+
Args:
|
| 664 |
+
input_ids: Input token IDs
|
| 665 |
+
past_key_values: Cached key-value pairs from previous forward passes
|
| 666 |
+
attention_mask: Attention mask for the input
|
| 667 |
+
**kwargs: Additional arguments
|
| 668 |
+
|
| 669 |
+
Returns:
|
| 670 |
+
Dictionary containing prepared inputs
|
| 671 |
+
"""
|
| 672 |
+
# If we have past_key_values, we only need the last token
|
| 673 |
+
if past_key_values is not None:
|
| 674 |
+
input_ids = input_ids[:, -1:]
|
| 675 |
+
|
| 676 |
+
return {
|
| 677 |
+
"input_ids": input_ids,
|
| 678 |
+
"past_key_values": past_key_values,
|
| 679 |
+
"use_cache": True,
|
| 680 |
+
}
|
| 681 |
+
|
| 682 |
+
def get_input_embeddings(self):
|
| 683 |
+
"""Get the input embeddings layer."""
|
| 684 |
+
return self.pico_decoder.embedding_proj
|
| 685 |
+
|
| 686 |
+
def set_input_embeddings(self, value):
|
| 687 |
+
"""Set the input embeddings layer."""
|
| 688 |
+
self.pico_decoder.embedding_proj = value
|
| 689 |
+
|
| 690 |
+
def get_output_embeddings(self):
|
| 691 |
+
"""Get the output embeddings layer."""
|
| 692 |
+
return self.pico_decoder.de_embedding_proj
|
| 693 |
+
|
| 694 |
+
def set_output_embeddings(self, value):
|
| 695 |
+
"""Set the output embeddings layer."""
|
| 696 |
+
self.pico_decoder.de_embedding_proj = value
|
| 697 |
+
|
| 698 |
+
def get_lm_head(self):
|
| 699 |
+
"""Get the language model head."""
|
| 700 |
+
return self.pico_decoder.de_embedding_proj
|
| 701 |
+
|
| 702 |
+
def can_generate(self) -> bool:
|
| 703 |
+
"""Check if the model can generate text."""
|
| 704 |
+
return True
|
| 705 |
+
|
| 706 |
+
@property
|
| 707 |
+
def is_encoder_decoder(self) -> bool:
|
| 708 |
+
"""Check if the model is an encoder-decoder model."""
|
| 709 |
+
return False
|
| 710 |
+
|
| 711 |
+
@property
|
| 712 |
+
def can_use_cache(self) -> bool:
|
| 713 |
+
"""Check if the model can use KV cache."""
|
| 714 |
+
return True
|
| 715 |
+
|
| 716 |
+
def resize_token_embeddings(
|
| 717 |
+
self, new_num_tokens: Optional[int] = None
|
| 718 |
+
) -> torch.nn.Embedding:
|
| 719 |
+
"""Resize token embeddings."""
|
| 720 |
+
old_embeddings = self.get_input_embeddings()
|
| 721 |
+
if new_num_tokens is None:
|
| 722 |
+
new_num_tokens = old_embeddings.num_embeddings
|
| 723 |
+
|
| 724 |
+
new_embeddings = torch.nn.Embedding(
|
| 725 |
+
new_num_tokens, old_embeddings.embedding_dim
|
| 726 |
+
)
|
| 727 |
+
new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
|
| 728 |
+
old_embeddings.weight.data
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
self.pico_decoder.embedding_proj = new_embeddings
|
| 732 |
+
self.pico_decoder.de_embedding_proj = torch.nn.Linear(
|
| 733 |
+
old_embeddings.embedding_dim, new_num_tokens, bias=False
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
return new_embeddings
|
| 737 |
+
|
| 738 |
+
|
| 739 |
+
# Register for auto classes
|
| 740 |
+
PicoDecoderHFConfig.register_for_auto_class()
|
| 741 |
+
PicoDecoderHF.register_for_auto_class("AutoModel")
|
| 742 |
+
PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
|
| 743 |
+
|
| 744 |
+
|
| 745 |
+
########################################################
|
| 746 |
+
#
|
| 747 |
+
# New PicoDecoderForCausalLM class for generation support
|
| 748 |
+
#
|
| 749 |
+
########################################################
|
| 750 |
+
|
| 751 |
+
|
| 752 |
+
class PicoDecoderForCausalLM(PreTrainedModel, GenerationMixin):
|
| 753 |
+
"""
|
| 754 |
+
PicoDecoderForCausalLM: A HuggingFace-compatible model that properly supports generation.
|
| 755 |
+
|
| 756 |
+
This class is designed to work with existing checkpoints and provides full generation support.
|
| 757 |
+
It inherits from the right base classes that HuggingFace expects for text generation.
|
| 758 |
+
"""
|
| 759 |
+
|
| 760 |
+
config_class = PicoDecoderHFConfig
|
| 761 |
+
_no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
|
| 762 |
+
main_input_name = "input_ids"
|
| 763 |
+
|
| 764 |
+
def __init__(self, config: PicoDecoderHFConfig):
|
| 765 |
+
super().__init__(config)
|
| 766 |
+
self.pico_decoder = PicoDecoder(config)
|
| 767 |
+
# Initialize generation config with defaults
|
| 768 |
+
self.generation_config = GenerationConfig()
|
| 769 |
+
# Set some reasonable defaults for the model
|
| 770 |
+
if hasattr(config, "max_position_embeddings"):
|
| 771 |
+
self.generation_config.max_length = config.max_position_embeddings
|
| 772 |
+
if hasattr(config, "vocab_size"):
|
| 773 |
+
self.generation_config.vocab_size = config.vocab_size
|
| 774 |
+
|
| 775 |
+
def forward(
|
| 776 |
+
self,
|
| 777 |
+
input_ids: torch.Tensor,
|
| 778 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 779 |
+
use_cache: bool = False,
|
| 780 |
+
**kwargs,
|
| 781 |
+
) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
|
| 782 |
+
"""Forward pass for text generation."""
|
| 783 |
+
logits, past_key_values = self.pico_decoder(
|
| 784 |
+
input_ids, past_key_values, use_cache
|
| 785 |
+
)
|
| 786 |
+
if use_cache:
|
| 787 |
+
return CausalLMOutputWithPast(
|
| 788 |
+
logits=logits,
|
| 789 |
+
past_key_values=past_key_values,
|
| 790 |
+
)
|
| 791 |
+
else:
|
| 792 |
+
return CausalLMOutput(
|
| 793 |
+
logits=logits,
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
+
def prepare_inputs_for_generation(
|
| 797 |
+
self,
|
| 798 |
+
input_ids: torch.LongTensor,
|
| 799 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 800 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 801 |
+
**kwargs,
|
| 802 |
+
) -> Dict[str, Any]:
|
| 803 |
+
"""Prepare inputs for generation."""
|
| 804 |
+
# If we have past_key_values, we only need the last token
|
| 805 |
+
if past_key_values is not None:
|
| 806 |
+
input_ids = input_ids[:, -1:]
|
| 807 |
+
|
| 808 |
+
return {
|
| 809 |
+
"input_ids": input_ids,
|
| 810 |
+
"past_key_values": past_key_values,
|
| 811 |
+
"use_cache": True,
|
| 812 |
+
}
|
| 813 |
+
|
| 814 |
+
def get_input_embeddings(self):
|
| 815 |
+
"""Get the input embeddings layer."""
|
| 816 |
+
return self.pico_decoder.embedding_proj
|
| 817 |
+
|
| 818 |
+
def set_input_embeddings(self, value):
|
| 819 |
+
"""Set the input embeddings layer."""
|
| 820 |
+
self.pico_decoder.embedding_proj = value
|
| 821 |
+
|
| 822 |
+
def get_output_embeddings(self):
|
| 823 |
+
"""Get the output embeddings layer."""
|
| 824 |
+
return self.pico_decoder.de_embedding_proj
|
| 825 |
+
|
| 826 |
+
def set_output_embeddings(self, value):
|
| 827 |
+
"""Set the output embeddings layer."""
|
| 828 |
+
self.pico_decoder.de_embedding_proj = value
|
| 829 |
+
|
| 830 |
+
def get_lm_head(self):
|
| 831 |
+
"""Get the language model head."""
|
| 832 |
+
return self.pico_decoder.de_embedding_proj
|
| 833 |
+
|
| 834 |
+
def can_generate(self) -> bool:
|
| 835 |
+
"""Check if the model can generate text."""
|
| 836 |
+
return True
|
| 837 |
+
|
| 838 |
+
@property
|
| 839 |
+
def is_encoder_decoder(self) -> bool:
|
| 840 |
+
"""Check if the model is an encoder-decoder model."""
|
| 841 |
+
return False
|
| 842 |
+
|
| 843 |
+
@property
|
| 844 |
+
def can_use_cache(self) -> bool:
|
| 845 |
+
"""Check if the model can use KV cache."""
|
| 846 |
+
return True
|
| 847 |
+
|
| 848 |
+
def resize_token_embeddings(
|
| 849 |
+
self, new_num_tokens: Optional[int] = None
|
| 850 |
+
) -> torch.nn.Embedding:
|
| 851 |
+
"""Resize token embeddings."""
|
| 852 |
+
old_embeddings = self.get_input_embeddings()
|
| 853 |
+
if new_num_tokens is None:
|
| 854 |
+
new_num_tokens = old_embeddings.num_embeddings
|
| 855 |
+
|
| 856 |
+
new_embeddings = torch.nn.Embedding(
|
| 857 |
+
new_num_tokens, old_embeddings.embedding_dim
|
| 858 |
+
)
|
| 859 |
+
new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
|
| 860 |
+
old_embeddings.weight.data
|
| 861 |
+
)
|
| 862 |
+
|
| 863 |
+
self.pico_decoder.embedding_proj = new_embeddings
|
| 864 |
+
self.pico_decoder.de_embedding_proj = torch.nn.Linear(
|
| 865 |
+
old_embeddings.embedding_dim, new_num_tokens, bias=False
|
| 866 |
+
)
|
| 867 |
+
|
| 868 |
+
return new_embeddings
|
| 869 |
+
|
| 870 |
+
@classmethod
|
| 871 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
| 872 |
+
"""
|
| 873 |
+
Load a pretrained model from a checkpoint.
|
| 874 |
+
|
| 875 |
+
This method handles loading from both the old PicoDecoderHF format and the new format.
|
| 876 |
+
"""
|
| 877 |
+
# First try to load with the new class
|
| 878 |
+
try:
|
| 879 |
+
return super().from_pretrained(
|
| 880 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
| 881 |
+
)
|
| 882 |
+
except Exception as e:
|
| 883 |
+
print(f"Failed to load with new class: {e}")
|
| 884 |
+
print("Attempting to load with legacy class and convert...")
|
| 885 |
+
|
| 886 |
+
# Try to load with the old class and convert
|
| 887 |
+
try:
|
| 888 |
+
from transformers import AutoModel
|
| 889 |
+
|
| 890 |
+
old_model = AutoModel.from_pretrained(
|
| 891 |
+
pretrained_model_name_or_path,
|
| 892 |
+
trust_remote_code=True,
|
| 893 |
+
*model_args,
|
| 894 |
+
**kwargs,
|
| 895 |
+
)
|
| 896 |
+
|
| 897 |
+
# Create new model instance
|
| 898 |
+
new_model = cls(old_model.config)
|
| 899 |
+
|
| 900 |
+
# Copy state dict
|
| 901 |
+
new_model.load_state_dict(old_model.state_dict(), strict=False)
|
| 902 |
+
|
| 903 |
+
return new_model
|
| 904 |
+
|
| 905 |
+
except Exception as e2:
|
| 906 |
+
print(f"Failed to convert from legacy format: {e2}")
|
| 907 |
+
raise e
|
| 908 |
+
|
| 909 |
+
|
| 910 |
+
# Register the new class
|
| 911 |
+
PicoDecoderForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/special_tokens_map.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token": {
|
| 3 |
+
"content": "<|endoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"pad_token": {
|
| 10 |
+
"content": "<|padding|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
}
|
| 16 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_1000/tokenizer_config.json
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": false,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "|||IP_ADDRESS|||",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": true,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": false
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<|padding|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"50254": {
|
| 23 |
+
"content": " ",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": true,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": false
|
| 29 |
+
},
|
| 30 |
+
"50255": {
|
| 31 |
+
"content": " ",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": true,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": false
|
| 37 |
+
},
|
| 38 |
+
"50256": {
|
| 39 |
+
"content": " ",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": true,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": false
|
| 45 |
+
},
|
| 46 |
+
"50257": {
|
| 47 |
+
"content": " ",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": true,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": false
|
| 53 |
+
},
|
| 54 |
+
"50258": {
|
| 55 |
+
"content": " ",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": true,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": false
|
| 61 |
+
},
|
| 62 |
+
"50259": {
|
| 63 |
+
"content": " ",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": true,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": false
|
| 69 |
+
},
|
| 70 |
+
"50260": {
|
| 71 |
+
"content": " ",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": true,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": false
|
| 77 |
+
},
|
| 78 |
+
"50261": {
|
| 79 |
+
"content": " ",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": true,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": false
|
| 85 |
+
},
|
| 86 |
+
"50262": {
|
| 87 |
+
"content": " ",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": true,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": false
|
| 93 |
+
},
|
| 94 |
+
"50263": {
|
| 95 |
+
"content": " ",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": true,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": false
|
| 101 |
+
},
|
| 102 |
+
"50264": {
|
| 103 |
+
"content": " ",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": true,
|
| 106 |
+
"rstrip": false,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": false
|
| 109 |
+
},
|
| 110 |
+
"50265": {
|
| 111 |
+
"content": " ",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": true,
|
| 114 |
+
"rstrip": false,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": false
|
| 117 |
+
},
|
| 118 |
+
"50266": {
|
| 119 |
+
"content": " ",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": true,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false,
|
| 124 |
+
"special": false
|
| 125 |
+
},
|
| 126 |
+
"50267": {
|
| 127 |
+
"content": " ",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": true,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false,
|
| 132 |
+
"special": false
|
| 133 |
+
},
|
| 134 |
+
"50268": {
|
| 135 |
+
"content": " ",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": true,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false,
|
| 140 |
+
"special": false
|
| 141 |
+
},
|
| 142 |
+
"50269": {
|
| 143 |
+
"content": " ",
|
| 144 |
+
"lstrip": false,
|
| 145 |
+
"normalized": true,
|
| 146 |
+
"rstrip": false,
|
| 147 |
+
"single_word": false,
|
| 148 |
+
"special": false
|
| 149 |
+
},
|
| 150 |
+
"50270": {
|
| 151 |
+
"content": " ",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": true,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false,
|
| 156 |
+
"special": false
|
| 157 |
+
},
|
| 158 |
+
"50271": {
|
| 159 |
+
"content": " ",
|
| 160 |
+
"lstrip": false,
|
| 161 |
+
"normalized": true,
|
| 162 |
+
"rstrip": false,
|
| 163 |
+
"single_word": false,
|
| 164 |
+
"special": false
|
| 165 |
+
},
|
| 166 |
+
"50272": {
|
| 167 |
+
"content": " ",
|
| 168 |
+
"lstrip": false,
|
| 169 |
+
"normalized": true,
|
| 170 |
+
"rstrip": false,
|
| 171 |
+
"single_word": false,
|
| 172 |
+
"special": false
|
| 173 |
+
},
|
| 174 |
+
"50273": {
|
| 175 |
+
"content": " ",
|
| 176 |
+
"lstrip": false,
|
| 177 |
+
"normalized": true,
|
| 178 |
+
"rstrip": false,
|
| 179 |
+
"single_word": false,
|
| 180 |
+
"special": false
|
| 181 |
+
},
|
| 182 |
+
"50274": {
|
| 183 |
+
"content": " ",
|
| 184 |
+
"lstrip": false,
|
| 185 |
+
"normalized": true,
|
| 186 |
+
"rstrip": false,
|
| 187 |
+
"single_word": false,
|
| 188 |
+
"special": false
|
| 189 |
+
},
|
| 190 |
+
"50275": {
|
| 191 |
+
"content": " ",
|
| 192 |
+
"lstrip": false,
|
| 193 |
+
"normalized": true,
|
| 194 |
+
"rstrip": false,
|
| 195 |
+
"single_word": false,
|
| 196 |
+
"special": false
|
| 197 |
+
},
|
| 198 |
+
"50276": {
|
| 199 |
+
"content": " ",
|
| 200 |
+
"lstrip": false,
|
| 201 |
+
"normalized": true,
|
| 202 |
+
"rstrip": false,
|
| 203 |
+
"single_word": false,
|
| 204 |
+
"special": false
|
| 205 |
+
},
|
| 206 |
+
"50277": {
|
| 207 |
+
"content": "|||EMAIL_ADDRESS|||",
|
| 208 |
+
"lstrip": false,
|
| 209 |
+
"normalized": true,
|
| 210 |
+
"rstrip": false,
|
| 211 |
+
"single_word": false,
|
| 212 |
+
"special": false
|
| 213 |
+
},
|
| 214 |
+
"50278": {
|
| 215 |
+
"content": "|||PHONE_NUMBER|||",
|
| 216 |
+
"lstrip": false,
|
| 217 |
+
"normalized": true,
|
| 218 |
+
"rstrip": false,
|
| 219 |
+
"single_word": false,
|
| 220 |
+
"special": false
|
| 221 |
+
},
|
| 222 |
+
"50279": {
|
| 223 |
+
"content": "<|endoftext|>",
|
| 224 |
+
"lstrip": false,
|
| 225 |
+
"normalized": false,
|
| 226 |
+
"rstrip": false,
|
| 227 |
+
"single_word": false,
|
| 228 |
+
"special": true
|
| 229 |
+
}
|
| 230 |
+
},
|
| 231 |
+
"bos_token": null,
|
| 232 |
+
"clean_up_tokenization_spaces": true,
|
| 233 |
+
"eos_token": "<|endoftext|>",
|
| 234 |
+
"extra_special_tokens": {},
|
| 235 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 236 |
+
"pad_token": "<|padding|>",
|
| 237 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
| 238 |
+
"unk_token": null
|
| 239 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/config.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation_hidden_dim": 384,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"PicoDecoderHF"
|
| 5 |
+
],
|
| 6 |
+
"attention_n_heads": 12,
|
| 7 |
+
"attention_n_kv_heads": 4,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "pico_decoder.PicoDecoderHFConfig",
|
| 10 |
+
"AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
|
| 11 |
+
},
|
| 12 |
+
"batch_size": 1024,
|
| 13 |
+
"d_model": 96,
|
| 14 |
+
"max_seq_len": 2048,
|
| 15 |
+
"model_type": "pico_decoder",
|
| 16 |
+
"n_layers": 12,
|
| 17 |
+
"norm_eps": 1e-06,
|
| 18 |
+
"position_emb_theta": 10000.0,
|
| 19 |
+
"torch_dtype": "float32",
|
| 20 |
+
"transformers_version": "4.48.3",
|
| 21 |
+
"vocab_size": 50304
|
| 22 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/fabric_state/checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f63cfb2d211ae93a79dd41503954f66c62499535e964b2024491642521ef8c55
|
| 3 |
+
size 135543171
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"transformers_version": "4.48.3",
|
| 3 |
+
"vocab_size": 50304
|
| 4 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_activations.pt
ADDED
|
Binary file (98.3 kB). View file
|
|
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_data/data-00000-of-00001.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e9565d0b7f27a7a6e121ff10214d8530cf1999016e90a567eac83d2a26bdeb3e
|
| 3 |
+
size 274672
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_data/dataset_info.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"citation": "",
|
| 3 |
+
"description": "",
|
| 4 |
+
"features": {
|
| 5 |
+
"input_ids": {
|
| 6 |
+
"feature": {
|
| 7 |
+
"dtype": "int32",
|
| 8 |
+
"_type": "Value"
|
| 9 |
+
},
|
| 10 |
+
"_type": "Sequence"
|
| 11 |
+
},
|
| 12 |
+
"text": {
|
| 13 |
+
"dtype": "string",
|
| 14 |
+
"_type": "Value"
|
| 15 |
+
}
|
| 16 |
+
},
|
| 17 |
+
"homepage": "",
|
| 18 |
+
"license": ""
|
| 19 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_data/state.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_data_files": [
|
| 3 |
+
{
|
| 4 |
+
"filename": "data-00000-of-00001.arrow"
|
| 5 |
+
}
|
| 6 |
+
],
|
| 7 |
+
"_fingerprint": "80201725dca773a1",
|
| 8 |
+
"_format_columns": null,
|
| 9 |
+
"_format_kwargs": {},
|
| 10 |
+
"_format_type": null,
|
| 11 |
+
"_output_all_columns": false,
|
| 12 |
+
"_split": null
|
| 13 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_gradients.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2e58cd384c1152b182faa36e56cee0ca5f28b1ddf786b8e1b68d90bba8539e9f
|
| 3 |
+
size 2371527
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/learning_dynamics/train_weights.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e4de550e5abc314db55e3074d9218d203a86b523c616ed13157d48954a7fac76
|
| 3 |
+
size 2371443
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d849318b797c81059d055fe1e1bf7dd20699b24fa9038c056724c49de447915a
|
| 3 |
+
size 45143592
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/pico_decoder.py
ADDED
|
@@ -0,0 +1,911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Pico Decoder: A Lightweight Causal Transformer Language Model
|
| 3 |
+
|
| 4 |
+
Pico Decoder uses a simple LLAMA-style transformer architecture, written for clarity and educational purposes.
|
| 5 |
+
|
| 6 |
+
Everything is written with a modular design for easy modification and experimentation.
|
| 7 |
+
|
| 8 |
+
Key features:
|
| 9 |
+
- RMSNorm for layer normalization
|
| 10 |
+
- Rotary Positional Embeddings (RoPE)
|
| 11 |
+
- Multi-head attention with KV-cache support
|
| 12 |
+
- SwiGLU activation function
|
| 13 |
+
- Residual connections throughout
|
| 14 |
+
|
| 15 |
+
- KV-cache for faster autoregressive generation
|
| 16 |
+
|
| 17 |
+
References:
|
| 18 |
+
- RoPE: https://arxiv.org/abs/2104.09864
|
| 19 |
+
- SwiGLU: https://arxiv.org/abs/2002.05202
|
| 20 |
+
- LLAMA: https://arxiv.org/abs/2302.13971
|
| 21 |
+
|
| 22 |
+
Adapted from:
|
| 23 |
+
- OLMO: https://github.com/allenai/OLMo
|
| 24 |
+
- LLAMA: https://github.com/meta/llama
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
from dataclasses import asdict
|
| 28 |
+
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
|
| 29 |
+
|
| 30 |
+
import torch
|
| 31 |
+
import torch.nn as nn
|
| 32 |
+
import torch.nn.functional as F
|
| 33 |
+
|
| 34 |
+
# Handle PyTorch version compatibility for attention backend
|
| 35 |
+
try:
|
| 36 |
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
| 37 |
+
|
| 38 |
+
HAS_TORCH_ATTENTION = True
|
| 39 |
+
except ImportError:
|
| 40 |
+
# Fallback for older PyTorch versions
|
| 41 |
+
HAS_TORCH_ATTENTION = False
|
| 42 |
+
SDPBackend = None
|
| 43 |
+
sdpa_kernel = None
|
| 44 |
+
|
| 45 |
+
from transformers import GenerationMixin, PretrainedConfig, PreTrainedModel
|
| 46 |
+
from transformers.generation import GenerationConfig
|
| 47 |
+
from transformers.modeling_outputs import CausalLMOutput, CausalLMOutputWithPast
|
| 48 |
+
|
| 49 |
+
try:
|
| 50 |
+
if TYPE_CHECKING:
|
| 51 |
+
# We need to do this to avoid importing these when creating the HF-compatible models
|
| 52 |
+
from src.config import ModelConfig
|
| 53 |
+
except ImportError:
|
| 54 |
+
pass
|
| 55 |
+
|
| 56 |
+
########################################################
|
| 57 |
+
#
|
| 58 |
+
# Layer Normalization
|
| 59 |
+
#
|
| 60 |
+
########################################################
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class RMSNorm(torch.nn.Module):
|
| 64 |
+
"""Root Mean Square Layer Normalization.
|
| 65 |
+
|
| 66 |
+
A variant of Layer Normalization that uses RMS statistics instead of mean/variance,
|
| 67 |
+
resulting in improved stability and performance.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
config (Union[ModelConfig, PicoHFConfig]): Configuration object containing normalization parameters
|
| 71 |
+
- config.norm_eps: Small constant for numerical stability
|
| 72 |
+
- config.d_model: Model dimension for the weight parameter
|
| 73 |
+
|
| 74 |
+
References:
|
| 75 |
+
https://arxiv.org/abs/1910.07467
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
|
| 79 |
+
super().__init__()
|
| 80 |
+
self.eps = config.norm_eps
|
| 81 |
+
self.weight = nn.Parameter(torch.ones(config.d_model))
|
| 82 |
+
|
| 83 |
+
def _norm(self, x: torch.Tensor) -> torch.Tensor:
|
| 84 |
+
"""
|
| 85 |
+
Normalizes the input tensor by its RMS value.
|
| 86 |
+
"""
|
| 87 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 88 |
+
|
| 89 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 90 |
+
"""
|
| 91 |
+
Applies RMS normalization to the input tensor and scales it by the weight parameter.
|
| 92 |
+
"""
|
| 93 |
+
output = self._norm(x.float()).type_as(x)
|
| 94 |
+
return output * self.weight
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
########################################################
|
| 98 |
+
#
|
| 99 |
+
# Positional Embedding
|
| 100 |
+
#
|
| 101 |
+
########################################################
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class RoPE(nn.Module):
|
| 105 |
+
"""Rotary Positional Embeddings (RoPE).
|
| 106 |
+
|
| 107 |
+
Implements position-dependent rotation of keys and queries in attention mechanism,
|
| 108 |
+
allowing better modeling of relative positions in sequences. Uses complex number
|
| 109 |
+
operations for efficient rotation.
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
config (Union[ModelConfig, PicoHFConfig]): Model configuration containing:
|
| 113 |
+
- config.position_emb_theta: Base for frequency computation
|
| 114 |
+
- config.d_model: Model dimension
|
| 115 |
+
- config.attention_n_heads: Number of attention heads
|
| 116 |
+
- config.max_seq_len: Maximum sequence length
|
| 117 |
+
|
| 118 |
+
References:
|
| 119 |
+
https://arxiv.org/abs/2104.09864
|
| 120 |
+
"""
|
| 121 |
+
|
| 122 |
+
_freqs_cis_tensor: torch.Tensor | None = None
|
| 123 |
+
|
| 124 |
+
def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
|
| 125 |
+
super().__init__()
|
| 126 |
+
|
| 127 |
+
self.theta = config.position_emb_theta
|
| 128 |
+
self.dim = config.d_model // config.attention_n_heads
|
| 129 |
+
|
| 130 |
+
max_seq_len = config.max_seq_len
|
| 131 |
+
|
| 132 |
+
# only gets set once, and then reused for all RoPE instances
|
| 133 |
+
if RoPE._freqs_cis_tensor is None:
|
| 134 |
+
RoPE._freqs_cis_tensor = self._setup_freqs_cis(
|
| 135 |
+
max_seq_len, self.theta, self.dim
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# register _freqs_cis buffer
|
| 139 |
+
# can be easily recomputed so persistent=False
|
| 140 |
+
self.register_buffer("_freqs_cis", self._freqs_cis_tensor, persistent=False)
|
| 141 |
+
|
| 142 |
+
@classmethod
|
| 143 |
+
def _setup_freqs_cis(cls, seq_len: int, theta: float, dim: int) -> torch.Tensor:
|
| 144 |
+
"""Setup Frequency Tensor for RoPE Embeddings
|
| 145 |
+
|
| 146 |
+
Initializes the complex frequency tensor that is used to compute the RoPE embeddings.
|
| 147 |
+
|
| 148 |
+
Note other implementations will use cos and sin directly, but using the complex
|
| 149 |
+
number representation is (probably) more efficient:
|
| 150 |
+
|
| 151 |
+
e^(theta * i * t) = cos(theta * t) + i * sin(theta * t) [Euler's formula]
|
| 152 |
+
"""
|
| 153 |
+
_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
| 154 |
+
positions = torch.arange(seq_len)
|
| 155 |
+
freqs = torch.outer(positions, _freqs)
|
| 156 |
+
return torch.polar(torch.ones_like(freqs), freqs) # complex64
|
| 157 |
+
|
| 158 |
+
def get_freqs_cis(
|
| 159 |
+
self, input_shape: torch.Size, start_pos: int, end_pos: int
|
| 160 |
+
) -> torch.Tensor:
|
| 161 |
+
"""Reshape Frequency Tensor for RoPE Embeddings
|
| 162 |
+
|
| 163 |
+
Makes the frequency tensor broadcastable with the input tensor.
|
| 164 |
+
"""
|
| 165 |
+
_freqs_cis = self._freqs_cis[start_pos:end_pos]
|
| 166 |
+
ndim = len(input_shape)
|
| 167 |
+
assert 0 <= 1 < ndim
|
| 168 |
+
assert _freqs_cis.shape == (input_shape[1], input_shape[-1])
|
| 169 |
+
|
| 170 |
+
# TODO: Check whether this is correct (might be able to remove this)
|
| 171 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(input_shape)]
|
| 172 |
+
return _freqs_cis.view(*shape)
|
| 173 |
+
|
| 174 |
+
def forward(
|
| 175 |
+
self,
|
| 176 |
+
queries: torch.Tensor,
|
| 177 |
+
keys: torch.Tensor,
|
| 178 |
+
start_pos: int = 0,
|
| 179 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 180 |
+
"""Apply RoPE Embeddings to Queries and Keys
|
| 181 |
+
|
| 182 |
+
Applies the rotary positional embeddings to the input tensors via complex num multiplication
|
| 183 |
+
|
| 184 |
+
NOTE: The start_pos is used if we want to use the kv_cache in the attention mechanism.
|
| 185 |
+
"""
|
| 186 |
+
queries_ = torch.view_as_complex(
|
| 187 |
+
queries.float().reshape(*queries.shape[:-1], -1, 2)
|
| 188 |
+
)
|
| 189 |
+
keys_ = torch.view_as_complex(keys.float().reshape(*keys.shape[:-1], -1, 2))
|
| 190 |
+
|
| 191 |
+
input_shape = (
|
| 192 |
+
queries_.shape
|
| 193 |
+
) # same as keys: (batch_size, seq_len, n_heads, head_dim/2)
|
| 194 |
+
freqs_start_pos = start_pos
|
| 195 |
+
freqs_end_pos = freqs_start_pos + queries_.shape[1]
|
| 196 |
+
|
| 197 |
+
freqs_cis = self.get_freqs_cis(input_shape, freqs_start_pos, freqs_end_pos)
|
| 198 |
+
|
| 199 |
+
queries_rotated = torch.view_as_real(queries_ * freqs_cis).flatten(3)
|
| 200 |
+
keys_rotated = torch.view_as_real(keys_ * freqs_cis).flatten(3)
|
| 201 |
+
return queries_rotated.type_as(queries), keys_rotated.type_as(keys)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
########################################################
|
| 205 |
+
#
|
| 206 |
+
# Attention
|
| 207 |
+
#
|
| 208 |
+
########################################################
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class Attention(nn.Module):
|
| 212 |
+
"""Multi-head Attention with Group Query Attention support.
|
| 213 |
+
|
| 214 |
+
Implements scaled dot-product attention and supports:
|
| 215 |
+
- Grouped Query Attention (GQA)
|
| 216 |
+
- Key-Value caching for efficient inference
|
| 217 |
+
- RoPE integration
|
| 218 |
+
|
| 219 |
+
Args:
|
| 220 |
+
config (Union[ModelConfig, PretrainedConfig]): Configuration containing:
|
| 221 |
+
- config.attention_n_heads: Number of attention heads
|
| 222 |
+
- config.attention_n_kv_heads: Number of key/value heads
|
| 223 |
+
- config.d_model: Model dimension
|
| 224 |
+
- config.batch_size: Maximum batch size
|
| 225 |
+
- config.max_seq_len: Maximum sequence length
|
| 226 |
+
|
| 227 |
+
Shape:
|
| 228 |
+
- Input: (batch_size, seq_len, d_model)
|
| 229 |
+
- Output: (batch_size, seq_len, d_model)
|
| 230 |
+
"""
|
| 231 |
+
|
| 232 |
+
def __init__(
|
| 233 |
+
self,
|
| 234 |
+
config: Union["ModelConfig", "PicoDecoderHFConfig"],
|
| 235 |
+
):
|
| 236 |
+
super().__init__()
|
| 237 |
+
|
| 238 |
+
self.n_heads = config.attention_n_heads
|
| 239 |
+
self.n_kv_heads = config.attention_n_kv_heads
|
| 240 |
+
|
| 241 |
+
self.batch_size = config.batch_size
|
| 242 |
+
self.max_seq_len = config.max_seq_len
|
| 243 |
+
|
| 244 |
+
d_model = config.d_model
|
| 245 |
+
self.head_dim = d_model // self.n_heads
|
| 246 |
+
|
| 247 |
+
self.n_rep = self.n_heads // self.n_kv_heads
|
| 248 |
+
|
| 249 |
+
self.q_proj = nn.Linear(d_model, self.n_heads * self.head_dim, bias=False)
|
| 250 |
+
self.k_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
|
| 251 |
+
self.v_proj = nn.Linear(d_model, self.n_kv_heads * self.head_dim, bias=False)
|
| 252 |
+
self.o_proj = nn.Linear(self.n_heads * self.head_dim, d_model, bias=False)
|
| 253 |
+
|
| 254 |
+
self.rope = RoPE(config)
|
| 255 |
+
|
| 256 |
+
def forward(
|
| 257 |
+
self,
|
| 258 |
+
input: torch.Tensor,
|
| 259 |
+
mask: Optional[torch.Tensor] = None,
|
| 260 |
+
past_key_values: Optional[Tuple[torch.Tensor, ...]] = None,
|
| 261 |
+
use_cache: bool = False,
|
| 262 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
| 263 |
+
"""Forward pass for the attention mechanism.
|
| 264 |
+
|
| 265 |
+
Computes queries, keys, and values for the attention mechanism. Applies rotary positional
|
| 266 |
+
embeddings to the queries and keys, and then computes attention scores and outputs.
|
| 267 |
+
|
| 268 |
+
For an introduction to the attention mechanism, see:
|
| 269 |
+
https://arxiv.org/abs/1706.03762
|
| 270 |
+
|
| 271 |
+
A few things to note:
|
| 272 |
+
- The past_key_values is used to implement the KV cache, which is used to speed up
|
| 273 |
+
generation by caching the KV pairs from previous forward passes. This is useful when doing
|
| 274 |
+
tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
|
| 275 |
+
modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
|
| 276 |
+
its own KV cache - this KV cache is implemented as a tuple.
|
| 277 |
+
"""
|
| 278 |
+
bsz, seq_len, _ = input.shape
|
| 279 |
+
_queries, _keys, _values = (
|
| 280 |
+
self.q_proj(input),
|
| 281 |
+
self.k_proj(input),
|
| 282 |
+
self.v_proj(input),
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
# Reshaping for multi-head attention
|
| 286 |
+
queries = _queries.view(bsz, seq_len, self.n_heads, self.head_dim)
|
| 287 |
+
keys = _keys.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
|
| 288 |
+
values = _values.view(bsz, seq_len, self.n_kv_heads, self.head_dim)
|
| 289 |
+
|
| 290 |
+
# The start position is used to apply the RoPE embeddings to only the new tokens
|
| 291 |
+
# when using the kv_cache in the attention mechanism.
|
| 292 |
+
# We want to start from the last position in the cache.
|
| 293 |
+
start_pos = 0
|
| 294 |
+
if past_key_values is not None and past_key_values[0] is not None:
|
| 295 |
+
start_pos = past_key_values[0].shape[1]
|
| 296 |
+
|
| 297 |
+
# apply rotary positional embeddings
|
| 298 |
+
queries, keys = self.rope(queries, keys, start_pos)
|
| 299 |
+
|
| 300 |
+
if (
|
| 301 |
+
past_key_values is not None
|
| 302 |
+
and past_key_values[0] is not None
|
| 303 |
+
and past_key_values[1] is not None
|
| 304 |
+
):
|
| 305 |
+
keys = torch.cat([past_key_values[0], keys], dim=1)
|
| 306 |
+
values = torch.cat([past_key_values[1], values], dim=1)
|
| 307 |
+
|
| 308 |
+
if use_cache:
|
| 309 |
+
cached_keys = keys
|
| 310 |
+
cached_values = values
|
| 311 |
+
else:
|
| 312 |
+
cached_keys = None
|
| 313 |
+
cached_values = None
|
| 314 |
+
|
| 315 |
+
queries = queries.transpose(1, 2)
|
| 316 |
+
keys = keys.transpose(1, 2)
|
| 317 |
+
values = values.transpose(1, 2)
|
| 318 |
+
|
| 319 |
+
apply_gqa = self.n_rep > 1
|
| 320 |
+
if apply_gqa and queries.device.type == "mps":
|
| 321 |
+
# NOTE: MPS does not support GQA in the SDPA kernel, but we can repeat the keys and values
|
| 322 |
+
# outside of the kernel to get the same effect.
|
| 323 |
+
# See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
|
| 324 |
+
keys = keys.repeat_interleave(self.n_rep, dim=-3)
|
| 325 |
+
values = values.repeat_interleave(self.n_rep, dim=-3)
|
| 326 |
+
apply_gqa = False
|
| 327 |
+
|
| 328 |
+
if HAS_TORCH_ATTENTION:
|
| 329 |
+
backends = [SDPBackend.CUDNN_ATTENTION, SDPBackend.MATH]
|
| 330 |
+
with sdpa_kernel(backends=backends):
|
| 331 |
+
attn_output = F.scaled_dot_product_attention(
|
| 332 |
+
queries.contiguous(),
|
| 333 |
+
keys.contiguous(),
|
| 334 |
+
values.contiguous(),
|
| 335 |
+
attn_mask=mask.to(queries.dtype) if mask is not None else None,
|
| 336 |
+
enable_gqa=apply_gqa,
|
| 337 |
+
)
|
| 338 |
+
else:
|
| 339 |
+
# Fallback for older PyTorch versions - use default backend
|
| 340 |
+
attn_output = F.scaled_dot_product_attention(
|
| 341 |
+
queries.contiguous(),
|
| 342 |
+
keys.contiguous(),
|
| 343 |
+
values.contiguous(),
|
| 344 |
+
attn_mask=mask.to(queries.dtype) if mask is not None else None,
|
| 345 |
+
enable_gqa=apply_gqa,
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
|
| 349 |
+
output = self.o_proj(attn_output)
|
| 350 |
+
|
| 351 |
+
return output, (cached_keys, cached_values)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
########################################################
|
| 355 |
+
#
|
| 356 |
+
# SwiGLU (Combines MLP and Activation)
|
| 357 |
+
#
|
| 358 |
+
########################################################
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
class SwiGLU(nn.Module):
|
| 362 |
+
"""SwiGLU Activation Function with Linear Projections.
|
| 363 |
+
|
| 364 |
+
Implements the SwiGLU activation function combined with linear transformations,
|
| 365 |
+
serving as the feed-forward network in transformer blocks.
|
| 366 |
+
|
| 367 |
+
Args:
|
| 368 |
+
config (Union[ModelConfig, PicoDecoderHFConfig]): Configuration containing:
|
| 369 |
+
- config.d_model: Model dimension
|
| 370 |
+
- config.activation_hidden_dim: Hidden dimension (typically 4 * d_model)
|
| 371 |
+
|
| 372 |
+
References:
|
| 373 |
+
https://arxiv.org/abs/2002.05202
|
| 374 |
+
"""
|
| 375 |
+
|
| 376 |
+
def __init__(self, config: Union["ModelConfig", "PicoDecoderHFConfig"]):
|
| 377 |
+
super().__init__()
|
| 378 |
+
|
| 379 |
+
model_dim = config.d_model
|
| 380 |
+
act_hidden_dim = config.activation_hidden_dim # usually 4 * d_model
|
| 381 |
+
|
| 382 |
+
self.w_0 = nn.Linear(model_dim, act_hidden_dim, bias=False)
|
| 383 |
+
self.w_1 = nn.Linear(model_dim, act_hidden_dim, bias=False)
|
| 384 |
+
self.w_2 = nn.Linear(act_hidden_dim, model_dim, bias=False)
|
| 385 |
+
|
| 386 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 387 |
+
return self.w_2(F.silu(self.w_0(x)) * self.w_1(x))
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
########################################################
|
| 391 |
+
#
|
| 392 |
+
# PicoDecoderBlock
|
| 393 |
+
#
|
| 394 |
+
########################################################
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
class PicoDecoderBlock(nn.Module):
|
| 398 |
+
"""Single Transformer Block with Attention and Feed-forward layers.
|
| 399 |
+
|
| 400 |
+
Implements a standard transformer block with:
|
| 401 |
+
- Multi-head attention with normalization and residual connection
|
| 402 |
+
- SwiGLU feed-forward network with normalization and residual connection
|
| 403 |
+
|
| 404 |
+
Args:
|
| 405 |
+
config (Union[ModelConfig, PicoDecoderHFConfig]): Model configuration; either a dataclass or
|
| 406 |
+
a HuggingFace PicoDecoderHFConfig
|
| 407 |
+
"""
|
| 408 |
+
|
| 409 |
+
def __init__(
|
| 410 |
+
self,
|
| 411 |
+
config: Union["ModelConfig", "PicoDecoderHFConfig"],
|
| 412 |
+
):
|
| 413 |
+
super().__init__()
|
| 414 |
+
|
| 415 |
+
self.attention = Attention(config)
|
| 416 |
+
self.swiglu = SwiGLU(config)
|
| 417 |
+
self.attention_norm = RMSNorm(config)
|
| 418 |
+
self.swiglu_norm = RMSNorm(config)
|
| 419 |
+
|
| 420 |
+
def forward(
|
| 421 |
+
self,
|
| 422 |
+
input: torch.Tensor,
|
| 423 |
+
mask: Optional[torch.Tensor] = None,
|
| 424 |
+
past_key_values: Optional[Tuple[torch.Tensor]] = None,
|
| 425 |
+
use_cache: bool = False,
|
| 426 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
| 427 |
+
attention_output, cached_key_values = self.attention(
|
| 428 |
+
self.attention_norm(input),
|
| 429 |
+
mask=mask,
|
| 430 |
+
past_key_values=past_key_values,
|
| 431 |
+
use_cache=use_cache,
|
| 432 |
+
)
|
| 433 |
+
# NOTE: cached_key_values is None if use_cache is False
|
| 434 |
+
|
| 435 |
+
h = input + attention_output
|
| 436 |
+
out = h + self.swiglu(self.swiglu_norm(h))
|
| 437 |
+
return out, cached_key_values
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
########################################################
|
| 441 |
+
#
|
| 442 |
+
# Pico Decoder (Causal Transformer Model)
|
| 443 |
+
#
|
| 444 |
+
########################################################
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
class PicoDecoder(nn.Module):
|
| 448 |
+
"""
|
| 449 |
+
Pico Decoder: combines the embedding, causal decoder blocks, and output projection into a
|
| 450 |
+
single autoregressive model.
|
| 451 |
+
|
| 452 |
+
For more information on the model, see the classes for the modules that make up the model.
|
| 453 |
+
"""
|
| 454 |
+
|
| 455 |
+
def __init__(
|
| 456 |
+
self,
|
| 457 |
+
model_config: Union["ModelConfig", "PicoDecoderHFConfig"],
|
| 458 |
+
):
|
| 459 |
+
super().__init__()
|
| 460 |
+
self.config = model_config
|
| 461 |
+
|
| 462 |
+
self.embedding_proj = nn.Embedding(self.config.vocab_size, self.config.d_model)
|
| 463 |
+
self.layers = nn.ModuleList(
|
| 464 |
+
[PicoDecoderBlock(self.config) for _ in range(self.config.n_layers)]
|
| 465 |
+
)
|
| 466 |
+
self.output_norm = RMSNorm(self.config)
|
| 467 |
+
self.de_embedding_proj = nn.Linear(
|
| 468 |
+
self.config.d_model, self.config.vocab_size, bias=False
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
def convert_to_hf_model(self) -> "PicoDecoderHF":
|
| 472 |
+
"""Convert the Lightning model to a HuggingFace model."""
|
| 473 |
+
# Create HF config without fabric-specific settings
|
| 474 |
+
hf_config = PicoDecoderHFConfig.from_dataclass(self.config)
|
| 475 |
+
|
| 476 |
+
# Create new HF model
|
| 477 |
+
hf_model = PicoDecoderHF(hf_config)
|
| 478 |
+
|
| 479 |
+
# Copy state dict, excluding fabric-specific keys
|
| 480 |
+
hf_model.load_state_dict(self.state_dict(prefix="pico_decoder."))
|
| 481 |
+
|
| 482 |
+
return hf_model
|
| 483 |
+
|
| 484 |
+
def forward(
|
| 485 |
+
self,
|
| 486 |
+
input_ids: torch.Tensor,
|
| 487 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 488 |
+
use_cache: bool = False,
|
| 489 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[Tuple[torch.Tensor, torch.Tensor]]]]:
|
| 490 |
+
"""
|
| 491 |
+
This is the forward pass for the entire Pico model. It boils down to:
|
| 492 |
+
- Embedding the input ids
|
| 493 |
+
- Creating a causal mask
|
| 494 |
+
- Processing through the pico layers
|
| 495 |
+
- Projecting the output to logits
|
| 496 |
+
|
| 497 |
+
NOTE: One feature that might be confusing is the KV cache. The KV cache is used to speed up
|
| 498 |
+
generation by caching the KV pairs from previous forward passes. This is useful when doing
|
| 499 |
+
tasks that require generating multiple tokens conditioned on previous tokens (e.g. language
|
| 500 |
+
modeling, text generation, etc.). The way the KV cache is implemented is that each layer has
|
| 501 |
+
its own KV cache which is stored as a tuple. The whole model then stores a tuple of these
|
| 502 |
+
KV caches (so a tuple of tuples).
|
| 503 |
+
"""
|
| 504 |
+
|
| 505 |
+
seq_len = input_ids.shape[-1]
|
| 506 |
+
h = self.embedding_proj(input_ids)
|
| 507 |
+
|
| 508 |
+
# Calculate start position from past cached KV pairs. Remember that each layer has its
|
| 509 |
+
# own KV Cache. So when we index past_key_values, we need to index into the KV pairs for the
|
| 510 |
+
# correct layer and then for either the keys or values.
|
| 511 |
+
start_pos = 0
|
| 512 |
+
if (
|
| 513 |
+
past_key_values is not None
|
| 514 |
+
and past_key_values[0] is not None
|
| 515 |
+
and past_key_values[0][0] is not None
|
| 516 |
+
):
|
| 517 |
+
start_pos = past_key_values[0][0].shape[1]
|
| 518 |
+
|
| 519 |
+
# Create causal mask for current sequence
|
| 520 |
+
mask = None
|
| 521 |
+
if seq_len > 1:
|
| 522 |
+
mask = torch.full((seq_len, seq_len), float("-inf"))
|
| 523 |
+
mask = torch.triu(mask, diagonal=1)
|
| 524 |
+
|
| 525 |
+
# If using KV cache, extend mask to cover cached sequence length
|
| 526 |
+
if past_key_values is not None:
|
| 527 |
+
# Add zeros for cached tokens (we can attend to all of them)
|
| 528 |
+
mask = torch.hstack([torch.zeros((seq_len, start_pos)), mask])
|
| 529 |
+
|
| 530 |
+
mask = mask.to(h.device)
|
| 531 |
+
|
| 532 |
+
# NOTE: If we are using the cache, we need to store the cached KV pairs for each layer
|
| 533 |
+
# in a tuple. Each layer will have its own cached KV pair which we aggregate in a tuple.
|
| 534 |
+
cached_key_values = () if use_cache else None
|
| 535 |
+
|
| 536 |
+
# Process through transformer blocks
|
| 537 |
+
for idx, layer in enumerate(self.layers):
|
| 538 |
+
layer_past_key_values = None
|
| 539 |
+
if past_key_values is not None:
|
| 540 |
+
try:
|
| 541 |
+
# Handle both tuple-based cache and HuggingFace cache objects
|
| 542 |
+
if hasattr(past_key_values, "__getitem__") and idx < len(
|
| 543 |
+
past_key_values
|
| 544 |
+
):
|
| 545 |
+
layer_past_key_values = past_key_values[idx]
|
| 546 |
+
except (KeyError, IndexError, TypeError):
|
| 547 |
+
# If we can't access the cache properly, just skip it
|
| 548 |
+
layer_past_key_values = None
|
| 549 |
+
|
| 550 |
+
h, layer_cached_key_values = layer(
|
| 551 |
+
h, mask=mask, past_key_values=layer_past_key_values, use_cache=use_cache
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
if use_cache:
|
| 555 |
+
cached_key_values += (layer_cached_key_values,)
|
| 556 |
+
|
| 557 |
+
# Final norm and projection
|
| 558 |
+
h = self.output_norm(h)
|
| 559 |
+
logits = self.de_embedding_proj(h).float()
|
| 560 |
+
|
| 561 |
+
return logits, cached_key_values
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
########################################################
|
| 565 |
+
#
|
| 566 |
+
# HuggingFace Wrapper for the Pico Decoder model.
|
| 567 |
+
#
|
| 568 |
+
########################################################
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
class PicoDecoderHFConfig(PretrainedConfig):
|
| 572 |
+
"""Config class for the Pico Decoder HuggingFace wrapper."""
|
| 573 |
+
|
| 574 |
+
model_type = "pico_decoder"
|
| 575 |
+
|
| 576 |
+
@classmethod
|
| 577 |
+
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PicoDecoderHFConfig":
|
| 578 |
+
"""
|
| 579 |
+
Initialize config from a dictionary. Note that no kwargs are passed to the constructor --
|
| 580 |
+
this is because with some kwargs special handling is required and can make this class
|
| 581 |
+
brittle.
|
| 582 |
+
"""
|
| 583 |
+
pico_config = cls(**config_dict)
|
| 584 |
+
|
| 585 |
+
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
| 586 |
+
unused_kwargs = {
|
| 587 |
+
key: value for key, value in kwargs.items() if not hasattr(pico_config, key)
|
| 588 |
+
}
|
| 589 |
+
|
| 590 |
+
if return_unused_kwargs:
|
| 591 |
+
return pico_config, unused_kwargs
|
| 592 |
+
return pico_config
|
| 593 |
+
|
| 594 |
+
@classmethod
|
| 595 |
+
def from_dataclass(cls, model_config: "ModelConfig"):
|
| 596 |
+
"""Initialise from our custom config dataclass."""
|
| 597 |
+
return cls.from_dict(asdict(model_config))
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
class PicoDecoderHF(PreTrainedModel, GenerationMixin):
|
| 601 |
+
"""
|
| 602 |
+
HuggingFace wrapper for the Pico model with generation support.
|
| 603 |
+
|
| 604 |
+
Many evaluation frameworks require a model be setup as a HuggingFace model, so we provide a simple
|
| 605 |
+
wrapper that does just that. When we save checkpoints of the Pico model, we save both the normal
|
| 606 |
+
Pico model as well as the model wrapped in this HuggingFace class.
|
| 607 |
+
|
| 608 |
+
This also lets you do cool things like:
|
| 609 |
+
|
| 610 |
+
`model = AutoModelForCausalLM.from_pretrained("path/to/checkpoint")`
|
| 611 |
+
"""
|
| 612 |
+
|
| 613 |
+
config_class = PicoDecoderHFConfig
|
| 614 |
+
_no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
|
| 615 |
+
main_input_name = "input_ids"
|
| 616 |
+
|
| 617 |
+
def __init__(self, config: PicoDecoderHFConfig):
|
| 618 |
+
super().__init__(config)
|
| 619 |
+
self.pico_decoder = PicoDecoder(config)
|
| 620 |
+
# Initialize generation config with defaults
|
| 621 |
+
self.generation_config = GenerationConfig()
|
| 622 |
+
# Set some reasonable defaults for the model
|
| 623 |
+
if hasattr(config, "max_position_embeddings"):
|
| 624 |
+
self.generation_config.max_length = config.max_position_embeddings
|
| 625 |
+
if hasattr(config, "vocab_size"):
|
| 626 |
+
self.generation_config.vocab_size = config.vocab_size
|
| 627 |
+
|
| 628 |
+
def forward(
|
| 629 |
+
self,
|
| 630 |
+
input_ids: torch.Tensor,
|
| 631 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 632 |
+
use_cache: bool = False,
|
| 633 |
+
**kwargs,
|
| 634 |
+
) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
|
| 635 |
+
"""HuggingFace forward pass wrapper.
|
| 636 |
+
|
| 637 |
+
Forwards pass for the HuggingFace version of the Pico Model. Basic wrapper around the
|
| 638 |
+
Pico model's forward pass, and returns the output as a HuggingFace CausalLMOutput.
|
| 639 |
+
"""
|
| 640 |
+
logits, past_key_values = self.pico_decoder(
|
| 641 |
+
input_ids, past_key_values, use_cache
|
| 642 |
+
)
|
| 643 |
+
if use_cache:
|
| 644 |
+
return CausalLMOutputWithPast(
|
| 645 |
+
logits=logits,
|
| 646 |
+
past_key_values=past_key_values,
|
| 647 |
+
)
|
| 648 |
+
else:
|
| 649 |
+
return CausalLMOutput(
|
| 650 |
+
logits=logits,
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
def prepare_inputs_for_generation(
|
| 654 |
+
self,
|
| 655 |
+
input_ids: torch.LongTensor,
|
| 656 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 657 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 658 |
+
**kwargs,
|
| 659 |
+
) -> Dict[str, Any]:
|
| 660 |
+
"""
|
| 661 |
+
Prepare inputs for generation.
|
| 662 |
+
|
| 663 |
+
Args:
|
| 664 |
+
input_ids: Input token IDs
|
| 665 |
+
past_key_values: Cached key-value pairs from previous forward passes
|
| 666 |
+
attention_mask: Attention mask for the input
|
| 667 |
+
**kwargs: Additional arguments
|
| 668 |
+
|
| 669 |
+
Returns:
|
| 670 |
+
Dictionary containing prepared inputs
|
| 671 |
+
"""
|
| 672 |
+
# If we have past_key_values, we only need the last token
|
| 673 |
+
if past_key_values is not None:
|
| 674 |
+
input_ids = input_ids[:, -1:]
|
| 675 |
+
|
| 676 |
+
return {
|
| 677 |
+
"input_ids": input_ids,
|
| 678 |
+
"past_key_values": past_key_values,
|
| 679 |
+
"use_cache": True,
|
| 680 |
+
}
|
| 681 |
+
|
| 682 |
+
def get_input_embeddings(self):
|
| 683 |
+
"""Get the input embeddings layer."""
|
| 684 |
+
return self.pico_decoder.embedding_proj
|
| 685 |
+
|
| 686 |
+
def set_input_embeddings(self, value):
|
| 687 |
+
"""Set the input embeddings layer."""
|
| 688 |
+
self.pico_decoder.embedding_proj = value
|
| 689 |
+
|
| 690 |
+
def get_output_embeddings(self):
|
| 691 |
+
"""Get the output embeddings layer."""
|
| 692 |
+
return self.pico_decoder.de_embedding_proj
|
| 693 |
+
|
| 694 |
+
def set_output_embeddings(self, value):
|
| 695 |
+
"""Set the output embeddings layer."""
|
| 696 |
+
self.pico_decoder.de_embedding_proj = value
|
| 697 |
+
|
| 698 |
+
def get_lm_head(self):
|
| 699 |
+
"""Get the language model head."""
|
| 700 |
+
return self.pico_decoder.de_embedding_proj
|
| 701 |
+
|
| 702 |
+
def can_generate(self) -> bool:
|
| 703 |
+
"""Check if the model can generate text."""
|
| 704 |
+
return True
|
| 705 |
+
|
| 706 |
+
@property
|
| 707 |
+
def is_encoder_decoder(self) -> bool:
|
| 708 |
+
"""Check if the model is an encoder-decoder model."""
|
| 709 |
+
return False
|
| 710 |
+
|
| 711 |
+
@property
|
| 712 |
+
def can_use_cache(self) -> bool:
|
| 713 |
+
"""Check if the model can use KV cache."""
|
| 714 |
+
return True
|
| 715 |
+
|
| 716 |
+
def resize_token_embeddings(
|
| 717 |
+
self, new_num_tokens: Optional[int] = None
|
| 718 |
+
) -> torch.nn.Embedding:
|
| 719 |
+
"""Resize token embeddings."""
|
| 720 |
+
old_embeddings = self.get_input_embeddings()
|
| 721 |
+
if new_num_tokens is None:
|
| 722 |
+
new_num_tokens = old_embeddings.num_embeddings
|
| 723 |
+
|
| 724 |
+
new_embeddings = torch.nn.Embedding(
|
| 725 |
+
new_num_tokens, old_embeddings.embedding_dim
|
| 726 |
+
)
|
| 727 |
+
new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
|
| 728 |
+
old_embeddings.weight.data
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
self.pico_decoder.embedding_proj = new_embeddings
|
| 732 |
+
self.pico_decoder.de_embedding_proj = torch.nn.Linear(
|
| 733 |
+
old_embeddings.embedding_dim, new_num_tokens, bias=False
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
return new_embeddings
|
| 737 |
+
|
| 738 |
+
|
| 739 |
+
# Register for auto classes
|
| 740 |
+
PicoDecoderHFConfig.register_for_auto_class()
|
| 741 |
+
PicoDecoderHF.register_for_auto_class("AutoModel")
|
| 742 |
+
PicoDecoderHF.register_for_auto_class("AutoModelForCausalLM")
|
| 743 |
+
|
| 744 |
+
|
| 745 |
+
########################################################
|
| 746 |
+
#
|
| 747 |
+
# New PicoDecoderForCausalLM class for generation support
|
| 748 |
+
#
|
| 749 |
+
########################################################
|
| 750 |
+
|
| 751 |
+
|
| 752 |
+
class PicoDecoderForCausalLM(PreTrainedModel, GenerationMixin):
|
| 753 |
+
"""
|
| 754 |
+
PicoDecoderForCausalLM: A HuggingFace-compatible model that properly supports generation.
|
| 755 |
+
|
| 756 |
+
This class is designed to work with existing checkpoints and provides full generation support.
|
| 757 |
+
It inherits from the right base classes that HuggingFace expects for text generation.
|
| 758 |
+
"""
|
| 759 |
+
|
| 760 |
+
config_class = PicoDecoderHFConfig
|
| 761 |
+
_no_split_modules = ["PicoBlock", "Attention", "SwiGLU", "RMSNorm"]
|
| 762 |
+
main_input_name = "input_ids"
|
| 763 |
+
|
| 764 |
+
def __init__(self, config: PicoDecoderHFConfig):
|
| 765 |
+
super().__init__(config)
|
| 766 |
+
self.pico_decoder = PicoDecoder(config)
|
| 767 |
+
# Initialize generation config with defaults
|
| 768 |
+
self.generation_config = GenerationConfig()
|
| 769 |
+
# Set some reasonable defaults for the model
|
| 770 |
+
if hasattr(config, "max_position_embeddings"):
|
| 771 |
+
self.generation_config.max_length = config.max_position_embeddings
|
| 772 |
+
if hasattr(config, "vocab_size"):
|
| 773 |
+
self.generation_config.vocab_size = config.vocab_size
|
| 774 |
+
|
| 775 |
+
def forward(
|
| 776 |
+
self,
|
| 777 |
+
input_ids: torch.Tensor,
|
| 778 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 779 |
+
use_cache: bool = False,
|
| 780 |
+
**kwargs,
|
| 781 |
+
) -> Union[CausalLMOutput, CausalLMOutputWithPast]:
|
| 782 |
+
"""Forward pass for text generation."""
|
| 783 |
+
logits, past_key_values = self.pico_decoder(
|
| 784 |
+
input_ids, past_key_values, use_cache
|
| 785 |
+
)
|
| 786 |
+
if use_cache:
|
| 787 |
+
return CausalLMOutputWithPast(
|
| 788 |
+
logits=logits,
|
| 789 |
+
past_key_values=past_key_values,
|
| 790 |
+
)
|
| 791 |
+
else:
|
| 792 |
+
return CausalLMOutput(
|
| 793 |
+
logits=logits,
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
+
def prepare_inputs_for_generation(
|
| 797 |
+
self,
|
| 798 |
+
input_ids: torch.LongTensor,
|
| 799 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 800 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 801 |
+
**kwargs,
|
| 802 |
+
) -> Dict[str, Any]:
|
| 803 |
+
"""Prepare inputs for generation."""
|
| 804 |
+
# If we have past_key_values, we only need the last token
|
| 805 |
+
if past_key_values is not None:
|
| 806 |
+
input_ids = input_ids[:, -1:]
|
| 807 |
+
|
| 808 |
+
return {
|
| 809 |
+
"input_ids": input_ids,
|
| 810 |
+
"past_key_values": past_key_values,
|
| 811 |
+
"use_cache": True,
|
| 812 |
+
}
|
| 813 |
+
|
| 814 |
+
def get_input_embeddings(self):
|
| 815 |
+
"""Get the input embeddings layer."""
|
| 816 |
+
return self.pico_decoder.embedding_proj
|
| 817 |
+
|
| 818 |
+
def set_input_embeddings(self, value):
|
| 819 |
+
"""Set the input embeddings layer."""
|
| 820 |
+
self.pico_decoder.embedding_proj = value
|
| 821 |
+
|
| 822 |
+
def get_output_embeddings(self):
|
| 823 |
+
"""Get the output embeddings layer."""
|
| 824 |
+
return self.pico_decoder.de_embedding_proj
|
| 825 |
+
|
| 826 |
+
def set_output_embeddings(self, value):
|
| 827 |
+
"""Set the output embeddings layer."""
|
| 828 |
+
self.pico_decoder.de_embedding_proj = value
|
| 829 |
+
|
| 830 |
+
def get_lm_head(self):
|
| 831 |
+
"""Get the language model head."""
|
| 832 |
+
return self.pico_decoder.de_embedding_proj
|
| 833 |
+
|
| 834 |
+
def can_generate(self) -> bool:
|
| 835 |
+
"""Check if the model can generate text."""
|
| 836 |
+
return True
|
| 837 |
+
|
| 838 |
+
@property
|
| 839 |
+
def is_encoder_decoder(self) -> bool:
|
| 840 |
+
"""Check if the model is an encoder-decoder model."""
|
| 841 |
+
return False
|
| 842 |
+
|
| 843 |
+
@property
|
| 844 |
+
def can_use_cache(self) -> bool:
|
| 845 |
+
"""Check if the model can use KV cache."""
|
| 846 |
+
return True
|
| 847 |
+
|
| 848 |
+
def resize_token_embeddings(
|
| 849 |
+
self, new_num_tokens: Optional[int] = None
|
| 850 |
+
) -> torch.nn.Embedding:
|
| 851 |
+
"""Resize token embeddings."""
|
| 852 |
+
old_embeddings = self.get_input_embeddings()
|
| 853 |
+
if new_num_tokens is None:
|
| 854 |
+
new_num_tokens = old_embeddings.num_embeddings
|
| 855 |
+
|
| 856 |
+
new_embeddings = torch.nn.Embedding(
|
| 857 |
+
new_num_tokens, old_embeddings.embedding_dim
|
| 858 |
+
)
|
| 859 |
+
new_embeddings.weight.data[: old_embeddings.num_embeddings] = (
|
| 860 |
+
old_embeddings.weight.data
|
| 861 |
+
)
|
| 862 |
+
|
| 863 |
+
self.pico_decoder.embedding_proj = new_embeddings
|
| 864 |
+
self.pico_decoder.de_embedding_proj = torch.nn.Linear(
|
| 865 |
+
old_embeddings.embedding_dim, new_num_tokens, bias=False
|
| 866 |
+
)
|
| 867 |
+
|
| 868 |
+
return new_embeddings
|
| 869 |
+
|
| 870 |
+
@classmethod
|
| 871 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
| 872 |
+
"""
|
| 873 |
+
Load a pretrained model from a checkpoint.
|
| 874 |
+
|
| 875 |
+
This method handles loading from both the old PicoDecoderHF format and the new format.
|
| 876 |
+
"""
|
| 877 |
+
# First try to load with the new class
|
| 878 |
+
try:
|
| 879 |
+
return super().from_pretrained(
|
| 880 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
| 881 |
+
)
|
| 882 |
+
except Exception as e:
|
| 883 |
+
print(f"Failed to load with new class: {e}")
|
| 884 |
+
print("Attempting to load with legacy class and convert...")
|
| 885 |
+
|
| 886 |
+
# Try to load with the old class and convert
|
| 887 |
+
try:
|
| 888 |
+
from transformers import AutoModel
|
| 889 |
+
|
| 890 |
+
old_model = AutoModel.from_pretrained(
|
| 891 |
+
pretrained_model_name_or_path,
|
| 892 |
+
trust_remote_code=True,
|
| 893 |
+
*model_args,
|
| 894 |
+
**kwargs,
|
| 895 |
+
)
|
| 896 |
+
|
| 897 |
+
# Create new model instance
|
| 898 |
+
new_model = cls(old_model.config)
|
| 899 |
+
|
| 900 |
+
# Copy state dict
|
| 901 |
+
new_model.load_state_dict(old_model.state_dict(), strict=False)
|
| 902 |
+
|
| 903 |
+
return new_model
|
| 904 |
+
|
| 905 |
+
except Exception as e2:
|
| 906 |
+
print(f"Failed to convert from legacy format: {e2}")
|
| 907 |
+
raise e
|
| 908 |
+
|
| 909 |
+
|
| 910 |
+
# Register the new class
|
| 911 |
+
PicoDecoderForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/special_tokens_map.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token": {
|
| 3 |
+
"content": "<|endoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"pad_token": {
|
| 10 |
+
"content": "<|padding|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
}
|
| 16 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_10000/tokenizer_config.json
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": false,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "|||IP_ADDRESS|||",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": true,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": false
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<|padding|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"50254": {
|
| 23 |
+
"content": " ",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": true,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": false
|
| 29 |
+
},
|
| 30 |
+
"50255": {
|
| 31 |
+
"content": " ",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": true,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": false
|
| 37 |
+
},
|
| 38 |
+
"50256": {
|
| 39 |
+
"content": " ",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": true,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": false
|
| 45 |
+
},
|
| 46 |
+
"50257": {
|
| 47 |
+
"content": " ",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": true,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": false
|
| 53 |
+
},
|
| 54 |
+
"50258": {
|
| 55 |
+
"content": " ",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": true,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": false
|
| 61 |
+
},
|
| 62 |
+
"50259": {
|
| 63 |
+
"content": " ",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": true,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": false
|
| 69 |
+
},
|
| 70 |
+
"50260": {
|
| 71 |
+
"content": " ",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": true,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": false
|
| 77 |
+
},
|
| 78 |
+
"50261": {
|
| 79 |
+
"content": " ",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": true,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": false
|
| 85 |
+
},
|
| 86 |
+
"50262": {
|
| 87 |
+
"content": " ",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": true,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": false
|
| 93 |
+
},
|
| 94 |
+
"50263": {
|
| 95 |
+
"content": " ",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": true,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": false
|
| 101 |
+
},
|
| 102 |
+
"50264": {
|
| 103 |
+
"content": " ",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": true,
|
| 106 |
+
"rstrip": false,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": false
|
| 109 |
+
},
|
| 110 |
+
"50265": {
|
| 111 |
+
"content": " ",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": true,
|
| 114 |
+
"rstrip": false,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": false
|
| 117 |
+
},
|
| 118 |
+
"50266": {
|
| 119 |
+
"content": " ",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": true,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false,
|
| 124 |
+
"special": false
|
| 125 |
+
},
|
| 126 |
+
"50267": {
|
| 127 |
+
"content": " ",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": true,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false,
|
| 132 |
+
"special": false
|
| 133 |
+
},
|
| 134 |
+
"50268": {
|
| 135 |
+
"content": " ",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": true,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false,
|
| 140 |
+
"special": false
|
| 141 |
+
},
|
| 142 |
+
"50269": {
|
| 143 |
+
"content": " ",
|
| 144 |
+
"lstrip": false,
|
| 145 |
+
"normalized": true,
|
| 146 |
+
"rstrip": false,
|
| 147 |
+
"single_word": false,
|
| 148 |
+
"special": false
|
| 149 |
+
},
|
| 150 |
+
"50270": {
|
| 151 |
+
"content": " ",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": true,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false,
|
| 156 |
+
"special": false
|
| 157 |
+
},
|
| 158 |
+
"50271": {
|
| 159 |
+
"content": " ",
|
| 160 |
+
"lstrip": false,
|
| 161 |
+
"normalized": true,
|
| 162 |
+
"rstrip": false,
|
| 163 |
+
"single_word": false,
|
| 164 |
+
"special": false
|
| 165 |
+
},
|
| 166 |
+
"50272": {
|
| 167 |
+
"content": " ",
|
| 168 |
+
"lstrip": false,
|
| 169 |
+
"normalized": true,
|
| 170 |
+
"rstrip": false,
|
| 171 |
+
"single_word": false,
|
| 172 |
+
"special": false
|
| 173 |
+
},
|
| 174 |
+
"50273": {
|
| 175 |
+
"content": " ",
|
| 176 |
+
"lstrip": false,
|
| 177 |
+
"normalized": true,
|
| 178 |
+
"rstrip": false,
|
| 179 |
+
"single_word": false,
|
| 180 |
+
"special": false
|
| 181 |
+
},
|
| 182 |
+
"50274": {
|
| 183 |
+
"content": " ",
|
| 184 |
+
"lstrip": false,
|
| 185 |
+
"normalized": true,
|
| 186 |
+
"rstrip": false,
|
| 187 |
+
"single_word": false,
|
| 188 |
+
"special": false
|
| 189 |
+
},
|
| 190 |
+
"50275": {
|
| 191 |
+
"content": " ",
|
| 192 |
+
"lstrip": false,
|
| 193 |
+
"normalized": true,
|
| 194 |
+
"rstrip": false,
|
| 195 |
+
"single_word": false,
|
| 196 |
+
"special": false
|
| 197 |
+
},
|
| 198 |
+
"50276": {
|
| 199 |
+
"content": " ",
|
| 200 |
+
"lstrip": false,
|
| 201 |
+
"normalized": true,
|
| 202 |
+
"rstrip": false,
|
| 203 |
+
"single_word": false,
|
| 204 |
+
"special": false
|
| 205 |
+
},
|
| 206 |
+
"50277": {
|
| 207 |
+
"content": "|||EMAIL_ADDRESS|||",
|
| 208 |
+
"lstrip": false,
|
| 209 |
+
"normalized": true,
|
| 210 |
+
"rstrip": false,
|
| 211 |
+
"single_word": false,
|
| 212 |
+
"special": false
|
| 213 |
+
},
|
| 214 |
+
"50278": {
|
| 215 |
+
"content": "|||PHONE_NUMBER|||",
|
| 216 |
+
"lstrip": false,
|
| 217 |
+
"normalized": true,
|
| 218 |
+
"rstrip": false,
|
| 219 |
+
"single_word": false,
|
| 220 |
+
"special": false
|
| 221 |
+
},
|
| 222 |
+
"50279": {
|
| 223 |
+
"content": "<|endoftext|>",
|
| 224 |
+
"lstrip": false,
|
| 225 |
+
"normalized": false,
|
| 226 |
+
"rstrip": false,
|
| 227 |
+
"single_word": false,
|
| 228 |
+
"special": true
|
| 229 |
+
}
|
| 230 |
+
},
|
| 231 |
+
"bos_token": null,
|
| 232 |
+
"clean_up_tokenization_spaces": true,
|
| 233 |
+
"eos_token": "<|endoftext|>",
|
| 234 |
+
"extra_special_tokens": {},
|
| 235 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 236 |
+
"pad_token": "<|padding|>",
|
| 237 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
| 238 |
+
"unk_token": null
|
| 239 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/config.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation_hidden_dim": 384,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"PicoDecoderHF"
|
| 5 |
+
],
|
| 6 |
+
"attention_n_heads": 12,
|
| 7 |
+
"attention_n_kv_heads": 4,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "pico_decoder.PicoDecoderHFConfig",
|
| 10 |
+
"AutoModelForCausalLM": "pico_decoder.PicoDecoderHF"
|
| 11 |
+
},
|
| 12 |
+
"batch_size": 1024,
|
| 13 |
+
"d_model": 96,
|
| 14 |
+
"max_seq_len": 2048,
|
| 15 |
+
"model_type": "pico_decoder",
|
| 16 |
+
"n_layers": 12,
|
| 17 |
+
"norm_eps": 1e-06,
|
| 18 |
+
"position_emb_theta": 10000.0,
|
| 19 |
+
"torch_dtype": "float32",
|
| 20 |
+
"transformers_version": "4.48.3",
|
| 21 |
+
"vocab_size": 50304
|
| 22 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/fabric_state/checkpoint.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa32db20f88e728c91c0d3ebdbf6c73eb9ae88ce72e585d545f4918a4032bdf6
|
| 3 |
+
size 135543171
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"transformers_version": "4.48.3",
|
| 3 |
+
"vocab_size": 50304
|
| 4 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/learning_dynamics/train_activations.pt
ADDED
|
Binary file (98.3 kB). View file
|
|
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/learning_dynamics/train_data/data-00000-of-00001.arrow
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ec30c4780be6c0202b2e45eff9aafc355068121331fd4e15df007d6ffbcad98
|
| 3 |
+
size 271480
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/learning_dynamics/train_data/dataset_info.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"citation": "",
|
| 3 |
+
"description": "",
|
| 4 |
+
"features": {
|
| 5 |
+
"input_ids": {
|
| 6 |
+
"feature": {
|
| 7 |
+
"dtype": "int32",
|
| 8 |
+
"_type": "Value"
|
| 9 |
+
},
|
| 10 |
+
"_type": "Sequence"
|
| 11 |
+
},
|
| 12 |
+
"text": {
|
| 13 |
+
"dtype": "string",
|
| 14 |
+
"_type": "Value"
|
| 15 |
+
}
|
| 16 |
+
},
|
| 17 |
+
"homepage": "",
|
| 18 |
+
"license": ""
|
| 19 |
+
}
|
pico-decoder-tiny-dolma20M-v1/checkpoints/step_11000/learning_dynamics/train_data/state.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_data_files": [
|
| 3 |
+
{
|
| 4 |
+
"filename": "data-00000-of-00001.arrow"
|
| 5 |
+
}
|
| 6 |
+
],
|
| 7 |
+
"_fingerprint": "e60984724a7a4c9c",
|
| 8 |
+
"_format_columns": null,
|
| 9 |
+
"_format_kwargs": {},
|
| 10 |
+
"_format_type": null,
|
| 11 |
+
"_output_all_columns": false,
|
| 12 |
+
"_split": null
|
| 13 |
+
}
|