ThomasSimonini HF staff commited on
Commit
0791bfa
·
1 Parent(s): b5de061

Initial commit

Browse files
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  library_name: stable-baselines3
3
  tags:
4
- - PandaReachDense-v2
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
  - stable-baselines3
@@ -12,11 +12,11 @@ model-index:
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
- name: PandaReachDense-v2
16
- type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -0.26 +/- 0.13
20
  name: mean_reward
21
  verified: false
22
  ---
 
1
  ---
2
  library_name: stable-baselines3
3
  tags:
4
+ - PandaReachDense-v3
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
  - stable-baselines3
 
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
  metrics:
18
  - type: mean_reward
19
+ value: -0.24 +/- 0.14
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v3.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:86c9d87e13f4b4597b3f13c0ba70b17b5de1f61d4308e239c5da602ae9dcdfe3
3
- size 106666
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30d38891845e2ed061d1aed4e9ea4da19752eb3c01cd482d4ad1f448000c0c67
3
+ size 106943
a2c-PandaReachDense-v3/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 2.0.0a5
 
1
+ 2.0.0a13
a2c-PandaReachDense-v3/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fde7562f1c0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7fde7562a740>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -19,46 +19,46 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 79492,
23
- "_total_timesteps": 1000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1683724910010419395,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "_last_obs": {
31
  ":type:": "<class 'collections.OrderedDict'>",
32
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3jMRvyLeET+Ntzq/eRSVvijvVD6wDPs+45hKvytJqT6v0RM//m0CPrcPdL0CKRg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKGaRvgzzhD+xd9u/p6KovlCIjz9plqQ/jyO7v+bQZT/Ngys/u0fXP3Tyzr9Mgr0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADeMxG/It4RP423Or9htCy/x+6Yuhour795FJW+KO9UPrAM+z5oXcq+AmbiP8fBMz/jmEq/K0mpPq/REz+R54y/LTIivio/kz/+bQI+tw90vQIpGD//iqs/UWzYv7OwQj+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
- "achieved_goal": "[[-0.5671977 0.5697957 -0.72936326]\n [-0.29117182 0.20794356 0.49033117]\n [-0.79139537 0.33063635 0.57741827]\n [ 0.12737271 -0.0595853 0.5943757 ]]",
34
- "desired_goal": "[[-0.28398252 1.0386672 -1.7145902 ]\n [-0.32936594 1.1213474 1.2858402 ]\n [-1.4620227 0.8977188 0.6699799 ]\n [ 1.6818765 -1.6167741 1.4805388 ]]",
35
- "observation": "[[-5.6719768e-01 5.6979573e-01 -7.2936326e-01 -6.7462736e-01\n -1.1667841e-03 -1.3685944e+00]\n [-2.9117182e-01 2.0794356e-01 4.9033117e-01 -3.9524388e-01\n 1.7687380e+00 7.0217556e-01]\n [-7.9139537e-01 3.3063635e-01 5.7741827e-01 -1.1008168e+00\n -1.5839453e-01 1.1503651e+00]\n [ 1.2737271e-01 -5.9585299e-02 5.9437573e-01 1.3401793e+00\n -1.6908056e+00 7.6050872e-01]]"
36
  },
37
  "_last_episode_starts": {
38
  ":type:": "<class 'numpy.ndarray'>",
39
- ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
  },
41
  "_last_original_obs": {
42
  ":type:": "<class 'collections.OrderedDict'>",
43
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYbrhPYhAkr0gHw8+fMdRPSFiBT4JDDM+Lp3qO7HjoL3EKhM+VMEJvvoQFLyRrGI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
- "desired_goal": "[[ 0.11021877 -0.07141215 0.13976717]\n [ 0.05121563 0.13025714 0.1748506 ]\n [ 0.00715985 -0.07855929 0.14371783]\n [-0.13452655 -0.00903725 0.05534035]]",
46
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
  },
48
  "_episode_num": 0,
49
  "use_sde": false,
50
  "sde_sample_freq": -1,
51
- "_current_progress_remaining": 0.92052,
52
  "_stats_window_size": 100,
53
  "ep_info_buffer": {
54
  ":type:": "<class 'collections.deque'>",
55
- ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9awSrYGt6qMAWyUSwSMAXSUR0Byb34xk/bCdX2UKGgGR7/Vvegte2NOaAdLBWgIR0ByZKdrftQbdX2UKGgGR7/haC17Y02taAdLBmgIR0ByasNx2jfvdX2UKGgGR7/Ar7O3UhFFaAdLAmgIR0ByZUHv+fh/dX2UKGgGR7/O8yvcJtzkaAdLA2gIR0BydaJAMUh3dX2UKGgGR7/TcIZ62OQyaAdLBGgIR0BycJl6JIlMdX2UKGgGR7/R5aNdZ7ojaAdLA2gIR0ByZdn27FsIdX2UKGgGR7/MwA2hqTKUaAdLA2gIR0BydiPjn3cpdX2UKGgGR7/SPNFBppN9aAdLA2gIR0BycRBqsU7CdX2UKGgGR7/fBFuvUz9CaAdLBWgIR0Bya7RtxdY5dX2UKGgGR7+8uf29L6DXaAdLAmgIR0ByZi6RQrMDdX2UKGgGR7/P7MPjGT9saAdLA2gIR0BydrM9r434dX2UKGgGR7/Kj7ALy+YdaAdLA2gIR0BycaF+NLlFdX2UKGgGR7/NV5KODJ2daAdLA2gIR0BybETfzjFRdX2UKGgGR7/XlchTwUg0aAdLBWgIR0ByZwvkBCD3dX2UKGgGR7/PCgK4QSSNaAdLBGgIR0Byd2xQizLPdX2UKGgGR7/HqubI91U3aAdLA2gIR0BybNWsA/9pdX2UKGgGR7+nskY4yXUpaAdLAWgIR0Byd5opQUHqdX2UKGgGR7/a9q1w5vLpaAdLBGgIR0BycmEJ0GNadX2UKGgGR7/M92X9itq6aAdLA2gIR0BybU4uK4x2dX2UKGgGR7/S6DGtITXbaAdLBGgIR0BycxRl6JIldX2UKGgGR7+5uDSPU8V6aAdLAmgIR0BybbezlcQidX2UKGgGR7/gOwgTyrggaAdLBmgIR0ByeJyo4uK5dX2UKGgGR7+80tRNyo4uaAdLAmgIR0Byc2OxSpBHdX2UKGgGR7/kQljVhCtzaAdLCGgIR0ByaH4j8k2QdX2UKGgGR7/ShWHUMG5daAdLBGgIR0ByblwkxASndX2UKGgGR7/Adf9gnc+JaAdLAmgIR0ByaNbY9Pk8dX2UKGgGR7/ZAxBVuJk5aAdLBGgIR0ByeV6v7m+1dX2UKGgGR7/Vsf7rLQokaAdLBGgIR0BydCXUpd8idX2UKGgGR7/BYmLLpzLfaAdLAmgIR0BybstoSL62dX2UKGgGR7/SsniNsFdLaAdLBGgIR0ByaZaX8fmtdX2UKGgGR7/V3juKGcnWaAdLA2gIR0ByeeFGoaUBdX2UKGgGR7/KNQ0oBq9HaAdLA2gIR0BydKlANXo1dX2UKGgGR7/g1XmvGIbgaAdLBWgIR0Byb7VRUFSsdX2UKGgGR7/UiGWUr08OaAdLA2gIR0ByeoHgP3BYdX2UKGgGR7/W+B6KLsKLaAdLBWgIR0ByapDJEH+qdX2UKGgGR7/RZPl+3H7xaAdLA2gIR0ByexWYF7ladX2UKGgGR7/WuWa+evpyaAdLBGgIR0BycH5/LDAKdX2UKGgGR7+mFN+LFXJYaAdLAWgIR0Bye0BxPwd9dX2UKGgGR7/YgB91EE1VaAdLBGgIR0Bya0eYD1XedX2UKGgGR7/lgHVwxWT5aAdLCWgIR0Bydldu5z5odX2UKGgGR7/LGBnSOR1YaAdLBGgIR0BycSDqW1MNdX2UKGgGR7+8GZ/kNnXeaAdLAmgIR0Bya53X7LuAdX2UKGgGR7/Viay8jAzpaAdLBGgIR0Bye/3yqdYodX2UKGgGR7/DRUm2LHdXaAdLAmgIR0BydsTBZZB+dX2UKGgGR7/O7nPmgam5aAdLA2gIR0BycbVsk6cRdX2UKGgGR7/LIQvpQk5ZaAdLA2gIR0BybDC+De0pdX2UKGgGR7/Pos7MgU1yaAdLA2gIR0ByfHuPV/c4dX2UKGgGR7/Jq7iADq4ZaAdLA2gIR0Byd0WhysCDdX2UKGgGR7/R1/2Cdz4laAdLA2gIR0ByfRYYBNmEdX2UKGgGR7/iTJhfBvaUaAdLBGgIR0Bycn5qM3qBdX2UKGgGR7/aUTcqOLiuaAdLBGgIR0BybPpOerdWdX2UKGgGR7/aidJ8OTaCaAdLBGgIR0ByeA0YTCcgdX2UKGgGR7+MjZ+QU5+6aAdLAWgIR0BybSm3vx6OdX2UKGgGR7+h9gF5fMOgaAdLAWgIR0ByeDjT8YQ8dX2UKGgGR7/AVt4zJp35aAdLAmgIR0Byct3r2QGOdX2UKGgGR7/Wiay8jAzpaAdLBGgIR0ByfegOBlMAdX2UKGgGR7/DJIUahpQDaAdLAmgIR0Byc1Tgl4TsdX2UKGgGR7/OL0Bfa6BiaAdLA2gIR0ByeN+kP+XJdX2UKGgGR7+cry1/lQuVaAdLAWgIR0Byc4ZXMhX9dX2UKGgGR7/AUnG8274BaAdLAmgIR0ByfkokRjBmdX2UKGgGR7+je9Ba9sabaAdLAWgIR0ByfnOZ9d/sdX2UKGgGR7/B0se4kNWmaAdLAmgIR0Byc+H1vl2edX2UKGgGR7/GFMZgogFHaAdLA2gIR0ByeX1pTMq0dX2UKGgGR7/HCMPz4DcNaAdLA2gIR0ByfyktVaOhdX2UKGgGR7+99/jKgZjyaAdLAmgIR0ByefDIikftdX2UKGgGR7/K8YAKfFrEaAdLA2gIR0BydJTfixVydX2UKGgGR7/n5D7ZWaMKaAdLCWgIR0BybxF/hESedX2UKGgGR7+79deIEbHZaAdLAmgIR0Byellf7aZhdX2UKGgGR7/IroW56MR6aAdLA2gIR0Byf82m51/2dX2UKGgGR7/RLGaQV9F4aAdLA2gIR0BydUXBP9DQdX2UKGgGR7/Ke7tiQT24aAdLA2gIR0Byb8aNuLrHdX2UKGgGR7++v4dp7CzkaAdLAmgIR0ByevEfkmx/dX2UKGgGR7+7AO8TSLIgaAdLAmgIR0Bydbmig00ndX2UKGgGR7/Pt/FzdUKiaAdLA2gIR0BycFeiSJTEdX2UKGgGR7/XSLZSNwR5aAdLBGgIR0BygKPOpsGgdX2UKGgGR7/PkQwsXizcaAdLA2gIR0Bye3Ot4iX6dX2UKGgGR7/UqQzUI9kjaAdLA2gIR0BydkAU+LWJdX2UKGgGR7/AiYb83uNQaAdLAmgIR0BycLnyNGVidX2UKGgGR7+2NuLrHEMtaAdLAmgIR0BygRkK/mDEdX2UKGgGR7/SH2ys0YTCaAdLA2gIR0ByfAi8nNPhdX2UKGgGR7+8kjX4CZF5aAdLAmgIR0BycSUNayKOdX2UKGgGR7/JiYLLIPsiaAdLA2gIR0BydtbGFSKndX2UKGgGR7+1VtGd7OVxaAdLAmgIR0ByfF6NVBD5dX2UKGgGR7/axzq8lHBlaAdLBGgIR0ByceIfr8iwdX2UKGgGR7/S+jua4MF2aAdLBGgIR0ByfSaEzwc6dX2UKGgGR7/TuRs/IKc/aAdLBWgIR0Byd9DkU9IPdX2UKGgGR7/PyLhrFfiQaAdLA2gIR0BycnOE/SpjdX2UKGgGR7+6+PBBRhttaAdLAmgIR0ByfYKIBRyfdX2UKGgGR7/pGY0EX+ERaAdLCmgIR0BygwPOIInjdX2UKGgGR7+3ND+irT6SaAdLAmgIR0ByffV+Zw4sdX2UKGgGR7/Oo60Y0l7daAdLA2gIR0BycxIOH310dX2UKGgGR7/gJmmLtNSJaAdLBWgIR0ByeM1+AmRedX2UKGgGR7+dVmz0HyEtaAdLAWgIR0Byc05XEIgOdX2UKGgGR7/H0fYBeXzEaAdLA2gIR0Byg5me18b8dX2UKGgGR7/E1stTUAktaAdLAmgIR0ByfmCrcTJydX2UKGgGR792vbGm1pj+aAdLAWgIR0Byg8GKQ7tBdX2UKGgGR7/MGQCCBf8eaAdLA2gIR0ByeWK0lZ5idX2UKGgGR7/LFWn0kGA1aAdLA2gIR0ByfusHSncddX2UKGgGR7/ZrVOKwY+CaAdLBGgIR0BydAYEW69TdWUu"
56
  },
57
  "ep_success_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
  },
61
- "_n_updates": 3974,
62
  "n_steps": 5,
63
  "gamma": 0.99,
64
  "gae_lambda": 1.0,
@@ -92,6 +92,6 @@
92
  "n_envs": 4,
93
  "lr_schedule": {
94
  ":type:": "<class 'function'>",
95
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
  }
97
  }
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9d9105fb50>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f9d910680c0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
19
  "weight_decay": 0
20
  }
21
  },
22
+ "num_timesteps": 100000,
23
+ "_total_timesteps": 100000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1686239310969633640,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "_last_obs": {
31
  ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACTtfurk0yDp14rA+rJ6MvcBZ0r5tdfi+OWYtvl45SD5R5fU80OLJvillRz6UNpc+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATcvkP0iykr6pgb+/hAlRP7IEE79Svai/8KgLP14uPj9q7XG+nplrvhZu8z59T5s/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAJO1+6uTTIOnXisD7ZnWg+bi4ZO7KsPD6snoy9wFnSvm11+L4j9KY/zsw1vG1cv785Zi2+XjlIPlHl9Tyy2QbANV7nP5Zvwb/Q4sm+KWVHPpQ2lz4bM4G/AqHoPyZ7Jz+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-0.00085156 0.00152745 0.34547773]\n [-0.06866202 -0.410841 -0.4852709 ]\n [-0.16933526 0.19553134 0.03001657]\n [-0.39430857 0.19472183 0.29533827]]",
34
+ "desired_goal": "[[ 1.7874542 -0.28651643 -1.4961444 ]\n [ 0.81655145 -0.5742904 -1.3182776 ]\n [ 0.54554653 0.742895 -0.23625723]\n [-0.23007819 0.47544926 1.2133633 ]]",
35
+ "observation": "[[-8.51557183e-04 1.52745016e-03 3.45477730e-01 2.27164641e-01\n 2.33736215e-03 1.84252530e-01]\n [-6.86620176e-02 -4.10840988e-01 -4.85270888e-01 1.30432546e+00\n -1.10961925e-02 -1.49500811e+00]\n [-1.69335261e-01 1.95531338e-01 3.00165731e-02 -2.10703707e+00\n 1.80756247e+00 -1.51121783e+00]\n [-3.94308567e-01 1.94721833e-01 2.95338273e-01 -1.00937212e+00\n 1.81741357e+00 6.54222846e-01]]"
36
  },
37
  "_last_episode_starts": {
38
  ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
  },
41
  "_last_original_obs": {
42
  ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzpKEvdPBurtSx44+1pqIvcA+Dj41WBU+Av+APTW+FL35K00+pY69vdWJkb2860g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.06473313 -0.00569938 0.27886444]\n [-0.06670158 0.13891125 0.1458443 ]\n [ 0.06298639 -0.03631421 0.20036305]\n [-0.09255723 -0.07106367 0.19621176]]",
46
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
  },
48
  "_episode_num": 0,
49
  "use_sde": false,
50
  "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
  "_stats_window_size": 100,
53
  "ep_info_buffer": {
54
  ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv5Bun/DLr5aMAWyUSwGMAXSUR0B2eKYXwb2ldX2UKGgGR7/OH2ys0YTCaAdLA2gIR0B2c1fYzzmPdX2UKGgGR7+lpCa7VawEaAdLAWgIR0B2e4k7fYSQdX2UKGgGR7/QEIPbwjMWaAdLA2gIR0B2dk2Jiy6ddX2UKGgGR7/IUwi7kGRnaAdLA2gIR0B2eQ6CDmKZdX2UKGgGR7/bn8sMAmzCaAdLBGgIR0B2fCN5t3wDdX2UKGgGR7/Ax/NJOFg2aAdLAmgIR0B2eWVlf7aadX2UKGgGR7/Nn7pFCswMaAdLA2gIR0B2dsfbKzRhdX2UKGgGR7+3SSeRPoFFaAdLAmgIR0B2eaYhMajvdX2UKGgGR7/fYcebNKRMaAdLB2gIR0B2dFavA44qdX2UKGgGR7/Jkrf+CK77aAdLA2gIR0B2dymDUVi4dX2UKGgGR7/YShakhzNmaAdLBGgIR0B2fMMkQf6odX2UKGgGR7/BW4EwFkhBaAdLAmgIR0B2dLdhy8zzdX2UKGgGR7+enQ6ZH/cWaAdLAWgIR0B2fOg00m+kdX2UKGgGR7/L/6wdKdxyaAdLA2gIR0B2eirLhaTwdX2UKGgGR7/BQVKwpvxZaAdLAmgIR0B2d40EX+ERdX2UKGgGR7+8xzq8lHBlaAdLAmgIR0B2dQCjk+5fdX2UKGgGR7+1fG+9Jz1caAdLAmgIR0B2d9UADJU6dX2UKGgGR7/OdDIBBAv+aAdLA2gIR0B2epNahYeUdX2UKGgGR7+6u0TlDF6zaAdLAmgIR0B2dURFqi48dX2UKGgGR7/XWBz3h4t6aAdLBGgIR0B2fYeZG8VYdX2UKGgGR7/I7YkE9t/GaAdLA2gIR0B2ewYIjW07dX2UKGgGR7/IXu3MINVjaAdLA2gIR0B2dbcvduYQdX2UKGgGR7/QRsdkrf+CaAdLA2gIR0B2feiEg4ffdX2UKGgGR7/UI6r/82rGaAdLBWgIR0B2eIsRQJokdX2UKGgGR7++3azu4PPLaAdLAmgIR0B2dfjghr31dX2UKGgGR7/ZDUExIre7aAdLBGgIR0B2e5fpljEvdX2UKGgGR7/bRceKbaysaAdLBGgIR0B2fnovBacJdX2UKGgGR7+YcaOxSpBHaAdLAWgIR0B2e7wd8zAOdX2UKGgGR7/VNG3F1jiGaAdLBGgIR0B2eR6Rhc7hdX2UKGgGR7/URW912aDxaAdLA2gIR0B2dm4LCvX9dX2UKGgGR7/D4zrNW2gGaAdLA2gIR0B2fuuwHJLedX2UKGgGR7/PAhStNi6QaAdLA2gIR0B2fC2MKkVOdX2UKGgGR7/MN70Fr2xqaAdLA2gIR0B2eY/5ckdFdX2UKGgGR7/MhbnoxHoYaAdLA2gIR0B2dt9Cu2ZzdX2UKGgGR7+78R+SbH6uaAdLAmgIR0B2fG8XenAJdX2UKGgGR7/SSG8Empl0aAdLA2gIR0B2efBUJfICdX2UKGgGR7/TdYnv2GqQaAdLBGgIR0B2f3IhhYvGdX2UKGgGR7/EMsH0K7ZnaAdLAmgIR0B2fLTspobodX2UKGgGR7/ZxJul41P4aAdLBGgIR0B2d2fmLcbjdX2UKGgGR7+8c4o7V8TjaAdLAmgIR0B2ek3dbgTAdX2UKGgGR7/CPEKmbb1zaAdLAmgIR0B2fQ0tRNypdX2UKGgGR7/B3YcvM8oyaAdLAmgIR0B2d78baRISdX2UKGgGR7/NrCWNWEK3aAdLA2gIR0B2f/B3zMA4dX2UKGgGR7/BR2KVII4VaAdLAmgIR0B2fVCojv/jdX2UKGgGR7/OUXYUWVNYaAdLA2gIR0B2erRYzSCwdX2UKGgGR7+2CXhOxjaxaAdLAmgIR0B2gDLMcIZ7dX2UKGgGR7/LfMwDeTFEaAdLA2gIR0B2eCVZ9uxbdX2UKGgGR7+/LowEhaC+aAdLAmgIR0B2gIfzSThYdX2UKGgGR7/BNnoPkJa8aAdLAmgIR0B2eHvphWo4dX2UKGgGR7/aiSq2jO9naAdLBGgIR0B2fe97F85TdX2UKGgGR7/W79Q40dilaAdLBWgIR0B2e3BbfP5YdX2UKGgGR7+1iG34Kx9oaAdLAmgIR0B2eMGSpzcRdX2UKGgGR7/JX05EMLF5aAdLA2gIR0B2gPHS4OMEdX2UKGgGR7+/K7qY7aIvaAdLAmgIR0B2e8rYoRZmdX2UKGgGR7++QfZElVtGaAdLAmgIR0B2eRq/M4cWdX2UKGgGR7/Zq9oN/e+FaAdLBGgIR0B2foyad+XrdX2UKGgGR7/Xl3yI55quaAdLBGgIR0B2gY10knkUdX2UKGgGR7/I6y0KJEYwaAdLA2gIR0B2eX+kxh2GdX2UKGgGR7/VfI0ZWJaaaAdLBGgIR0B2fFFz+3pfdX2UKGgGR7/BTy8SPEKmaAdLAmgIR0B2geLEUCaJdX2UKGgGR7/aUvf0mMOxaAdLBGgIR0B2fyTzND+jdX2UKGgGR7/UAjIJZ4fPaAdLA2gIR0B2fMGW2PT5dX2UKGgGR7/OBsANoakzaAdLBGgIR0B2ehD1GsmwdX2UKGgGR7/KE2YOUdJbaAdLA2gIR0B2f4FgUlAvdX2UKGgGR7/Tv99+gDigaAdLBWgIR0B2gpARkEs8dX2UKGgGR7/JRrrPdEb6aAdLA2gIR0B2f/Cl7+kydX2UKGgGR7+52fTTfBN3aAdLAmgIR0B2gs7o0Q9SdX2UKGgGR7/ZwSrYGt6paAdLBWgIR0B2fXGhmGucdX2UKGgGR7/VlKbrkbPyaAdLBWgIR0B2esDZDiOvdX2UKGgGR7+4JqqOtGNJaAdLAmgIR0B2gw7FKkEcdX2UKGgGR7/LMNc4YJmeaAdLA2gIR0B2gFFCswL3dX2UKGgGR7/CRQrMC9ytaAdLAmgIR0B2ewOFxn3+dX2UKGgGR7/S8jiXIEKWaAdLA2gIR0B2fem3vx6OdX2UKGgGR7+0lkYoAn2JaAdLAmgIR0B2e1YlpoK2dX2UKGgGR7/S/Lkjopx4aAdLBGgIR0B2g6RmseXBdX2UKGgGR7/cKL876pHaaAdLBGgIR0B2gOb7TDwZdX2UKGgGR7/VposZpBX0aAdLBGgIR0B2fmkP+XJHdX2UKGgGR7+9mVZ9uxbCaAdLAmgIR0B2gTpbD/EPdX2UKGgGR7/TYl6Z6UqyaAdLBGgIR0B2e+n1nM+vdX2UKGgGR7+2cQRPGhmHaAdLAmgIR0B2fr3K0UoKdX2UKGgGR7/g6TOgQHzIaAdLBGgIR0B2hDr9l2/0dX2UKGgGR7/CKMNtqHoHaAdLAmgIR0B2fvtjTa0ydX2UKGgGR7/JuMMqjJuEaAdLA2gIR0B2fEsBhhH9dX2UKGgGR7+7dpItlI3BaAdLAmgIR0B2hHqs2eg+dX2UKGgGR7/IFW4mTkhiaAdLBGgIR0B2gbybx3FDdX2UKGgGR7+lNQCSzPa+aAdLAWgIR0B2fx7zCk44dX2UKGgGR7+/lXA/LTx5aAdLAmgIR0B2ghgnc+JQdX2UKGgGR7/ABOpKjBVNaAdLA2gIR0B2fMk5ZKWcdX2UKGgGR7/FpUxVQyh0aAdLA2gIR0B2f5waR6njdX2UKGgGR7/UZTAFgUlBaAdLBWgIR0B2hTkOqebvdX2UKGgGR7/E+pwS8J2MaAdLA2gIR0B2gnvBrN4adX2UKGgGR7/M1qnFYMfBaAdLA2gIR0B2fSzOX3QEdX2UKGgGR7/MTN+so2GZaAdLA2gIR0B2gBKvmozfdX2UKGgGR7+kSoOx0MgEaAdLAWgIR0B2fWPdVNpNdX2UKGgGR7/LUH6dlNDdaAdLA2gIR0B2hbRArxy5dX2UKGgGR7/Qy5I6Kcd6aAdLA2gIR0B2gvnuAqd6dX2UKGgGR7/L46fapPykaAdLA2gIR0B2gIfCAMDwdX2UKGgGR7/SnlGPPszEaAdLA2gIR0B2fdcGC7K8dX2UKGgGR7/EI68xsVL0aAdLAmgIR0B2hgYR/ViGdWUu"
56
  },
57
  "ep_success_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
  },
61
+ "_n_updates": 5000,
62
  "n_steps": 5,
63
  "gamma": 0.99,
64
  "gae_lambda": 1.0,
 
92
  "n_envs": 4,
93
  "lr_schedule": {
94
  ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
  }
97
  }
a2c-PandaReachDense-v3/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:39da30bbd88e78d49dfa759e68be225473ca70f46e55802b382e41ae2e3e5208
3
- size 44606
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3986dae121f7cd4e78d9f22f449dc71e33ec03490ac400d54673dc539ce245c7
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8ec06d546c0bad94df6cc88ebafae85c01cef022931be6272812b3cf986a4422
3
- size 45886
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ce6b2c7ec3cd54e7a972f70bf3b234c985d198b7952537bcb790f8737a36990
3
+ size 46014
a2c-PandaReachDense-v3/system_info.txt CHANGED
@@ -1,8 +1,8 @@
1
- - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
  - Python: 3.10.11
3
- - Stable-Baselines3: 2.0.0a5
4
- - PyTorch: 2.0.0+cu118
5
- - GPU Enabled: False
6
  - Numpy: 1.22.4
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
  - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a13
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fde7562f1c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fde7562a740>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 79492, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683724910010419395, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3jMRvyLeET+Ntzq/eRSVvijvVD6wDPs+45hKvytJqT6v0RM//m0CPrcPdL0CKRg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKGaRvgzzhD+xd9u/p6KovlCIjz9plqQ/jyO7v+bQZT/Ngys/u0fXP3Tyzr9Mgr0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADeMxG/It4RP423Or9htCy/x+6Yuhour795FJW+KO9UPrAM+z5oXcq+AmbiP8fBMz/jmEq/K0mpPq/REz+R54y/LTIivio/kz/+bQI+tw90vQIpGD//iqs/UWzYv7OwQj+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.5671977 0.5697957 -0.72936326]\n [-0.29117182 0.20794356 0.49033117]\n [-0.79139537 0.33063635 0.57741827]\n [ 0.12737271 -0.0595853 0.5943757 ]]", "desired_goal": "[[-0.28398252 1.0386672 -1.7145902 ]\n [-0.32936594 1.1213474 1.2858402 ]\n [-1.4620227 0.8977188 0.6699799 ]\n [ 1.6818765 -1.6167741 1.4805388 ]]", "observation": "[[-5.6719768e-01 5.6979573e-01 -7.2936326e-01 -6.7462736e-01\n -1.1667841e-03 -1.3685944e+00]\n [-2.9117182e-01 2.0794356e-01 4.9033117e-01 -3.9524388e-01\n 1.7687380e+00 7.0217556e-01]\n [-7.9139537e-01 3.3063635e-01 5.7741827e-01 -1.1008168e+00\n -1.5839453e-01 1.1503651e+00]\n [ 1.2737271e-01 -5.9585299e-02 5.9437573e-01 1.3401793e+00\n -1.6908056e+00 7.6050872e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYbrhPYhAkr0gHw8+fMdRPSFiBT4JDDM+Lp3qO7HjoL3EKhM+VMEJvvoQFLyRrGI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.11021877 -0.07141215 0.13976717]\n [ 0.05121563 0.13025714 0.1748506 ]\n [ 0.00715985 -0.07855929 0.14371783]\n [-0.13452655 -0.00903725 0.05534035]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.92052, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9awSrYGt6qMAWyUSwSMAXSUR0Byb34xk/bCdX2UKGgGR7/Vvegte2NOaAdLBWgIR0ByZKdrftQbdX2UKGgGR7/haC17Y02taAdLBmgIR0ByasNx2jfvdX2UKGgGR7/Ar7O3UhFFaAdLAmgIR0ByZUHv+fh/dX2UKGgGR7/O8yvcJtzkaAdLA2gIR0BydaJAMUh3dX2UKGgGR7/TcIZ62OQyaAdLBGgIR0BycJl6JIlMdX2UKGgGR7/R5aNdZ7ojaAdLA2gIR0ByZdn27FsIdX2UKGgGR7/MwA2hqTKUaAdLA2gIR0BydiPjn3cpdX2UKGgGR7/SPNFBppN9aAdLA2gIR0BycRBqsU7CdX2UKGgGR7/fBFuvUz9CaAdLBWgIR0Bya7RtxdY5dX2UKGgGR7+8uf29L6DXaAdLAmgIR0ByZi6RQrMDdX2UKGgGR7/P7MPjGT9saAdLA2gIR0BydrM9r434dX2UKGgGR7/Kj7ALy+YdaAdLA2gIR0BycaF+NLlFdX2UKGgGR7/NV5KODJ2daAdLA2gIR0BybETfzjFRdX2UKGgGR7/XlchTwUg0aAdLBWgIR0ByZwvkBCD3dX2UKGgGR7/PCgK4QSSNaAdLBGgIR0Byd2xQizLPdX2UKGgGR7/HqubI91U3aAdLA2gIR0BybNWsA/9pdX2UKGgGR7+nskY4yXUpaAdLAWgIR0Byd5opQUHqdX2UKGgGR7/a9q1w5vLpaAdLBGgIR0BycmEJ0GNadX2UKGgGR7/M92X9itq6aAdLA2gIR0BybU4uK4x2dX2UKGgGR7/S6DGtITXbaAdLBGgIR0BycxRl6JIldX2UKGgGR7+5uDSPU8V6aAdLAmgIR0BybbezlcQidX2UKGgGR7/gOwgTyrggaAdLBmgIR0ByeJyo4uK5dX2UKGgGR7+80tRNyo4uaAdLAmgIR0Byc2OxSpBHdX2UKGgGR7/kQljVhCtzaAdLCGgIR0ByaH4j8k2QdX2UKGgGR7/ShWHUMG5daAdLBGgIR0ByblwkxASndX2UKGgGR7/Adf9gnc+JaAdLAmgIR0ByaNbY9Pk8dX2UKGgGR7/ZAxBVuJk5aAdLBGgIR0ByeV6v7m+1dX2UKGgGR7/Vsf7rLQokaAdLBGgIR0BydCXUpd8idX2UKGgGR7/BYmLLpzLfaAdLAmgIR0BybstoSL62dX2UKGgGR7/SsniNsFdLaAdLBGgIR0ByaZaX8fmtdX2UKGgGR7/V3juKGcnWaAdLA2gIR0ByeeFGoaUBdX2UKGgGR7/KNQ0oBq9HaAdLA2gIR0BydKlANXo1dX2UKGgGR7/g1XmvGIbgaAdLBWgIR0Byb7VRUFSsdX2UKGgGR7/UiGWUr08OaAdLA2gIR0ByeoHgP3BYdX2UKGgGR7/W+B6KLsKLaAdLBWgIR0ByapDJEH+qdX2UKGgGR7/RZPl+3H7xaAdLA2gIR0ByexWYF7ladX2UKGgGR7/WuWa+evpyaAdLBGgIR0BycH5/LDAKdX2UKGgGR7+mFN+LFXJYaAdLAWgIR0Bye0BxPwd9dX2UKGgGR7/YgB91EE1VaAdLBGgIR0Bya0eYD1XedX2UKGgGR7/lgHVwxWT5aAdLCWgIR0Bydldu5z5odX2UKGgGR7/LGBnSOR1YaAdLBGgIR0BycSDqW1MNdX2UKGgGR7+8GZ/kNnXeaAdLAmgIR0Bya53X7LuAdX2UKGgGR7/Viay8jAzpaAdLBGgIR0Bye/3yqdYodX2UKGgGR7/DRUm2LHdXaAdLAmgIR0BydsTBZZB+dX2UKGgGR7/O7nPmgam5aAdLA2gIR0BycbVsk6cRdX2UKGgGR7/LIQvpQk5ZaAdLA2gIR0BybDC+De0pdX2UKGgGR7/Pos7MgU1yaAdLA2gIR0ByfHuPV/c4dX2UKGgGR7/Jq7iADq4ZaAdLA2gIR0Byd0WhysCDdX2UKGgGR7/R1/2Cdz4laAdLA2gIR0ByfRYYBNmEdX2UKGgGR7/iTJhfBvaUaAdLBGgIR0Bycn5qM3qBdX2UKGgGR7/aUTcqOLiuaAdLBGgIR0BybPpOerdWdX2UKGgGR7/aidJ8OTaCaAdLBGgIR0ByeA0YTCcgdX2UKGgGR7+MjZ+QU5+6aAdLAWgIR0BybSm3vx6OdX2UKGgGR7+h9gF5fMOgaAdLAWgIR0ByeDjT8YQ8dX2UKGgGR7/AVt4zJp35aAdLAmgIR0Byct3r2QGOdX2UKGgGR7/Wiay8jAzpaAdLBGgIR0ByfegOBlMAdX2UKGgGR7/DJIUahpQDaAdLAmgIR0Byc1Tgl4TsdX2UKGgGR7/OL0Bfa6BiaAdLA2gIR0ByeN+kP+XJdX2UKGgGR7+cry1/lQuVaAdLAWgIR0Byc4ZXMhX9dX2UKGgGR7/AUnG8274BaAdLAmgIR0ByfkokRjBmdX2UKGgGR7+je9Ba9sabaAdLAWgIR0ByfnOZ9d/sdX2UKGgGR7/B0se4kNWmaAdLAmgIR0Byc+H1vl2edX2UKGgGR7/GFMZgogFHaAdLA2gIR0ByeX1pTMq0dX2UKGgGR7/HCMPz4DcNaAdLA2gIR0ByfyktVaOhdX2UKGgGR7+99/jKgZjyaAdLAmgIR0ByefDIikftdX2UKGgGR7/K8YAKfFrEaAdLA2gIR0BydJTfixVydX2UKGgGR7/n5D7ZWaMKaAdLCWgIR0BybxF/hESedX2UKGgGR7+79deIEbHZaAdLAmgIR0Byellf7aZhdX2UKGgGR7/IroW56MR6aAdLA2gIR0Byf82m51/2dX2UKGgGR7/RLGaQV9F4aAdLA2gIR0BydUXBP9DQdX2UKGgGR7/Ke7tiQT24aAdLA2gIR0Byb8aNuLrHdX2UKGgGR7++v4dp7CzkaAdLAmgIR0ByevEfkmx/dX2UKGgGR7+7AO8TSLIgaAdLAmgIR0Bydbmig00ndX2UKGgGR7/Pt/FzdUKiaAdLA2gIR0BycFeiSJTEdX2UKGgGR7/XSLZSNwR5aAdLBGgIR0BygKPOpsGgdX2UKGgGR7/PkQwsXizcaAdLA2gIR0Bye3Ot4iX6dX2UKGgGR7/UqQzUI9kjaAdLA2gIR0BydkAU+LWJdX2UKGgGR7/AiYb83uNQaAdLAmgIR0BycLnyNGVidX2UKGgGR7+2NuLrHEMtaAdLAmgIR0BygRkK/mDEdX2UKGgGR7/SH2ys0YTCaAdLA2gIR0ByfAi8nNPhdX2UKGgGR7+8kjX4CZF5aAdLAmgIR0BycSUNayKOdX2UKGgGR7/JiYLLIPsiaAdLA2gIR0BydtbGFSKndX2UKGgGR7+1VtGd7OVxaAdLAmgIR0ByfF6NVBD5dX2UKGgGR7/axzq8lHBlaAdLBGgIR0ByceIfr8iwdX2UKGgGR7/S+jua4MF2aAdLBGgIR0ByfSaEzwc6dX2UKGgGR7/TuRs/IKc/aAdLBWgIR0Byd9DkU9IPdX2UKGgGR7/PyLhrFfiQaAdLA2gIR0BycnOE/SpjdX2UKGgGR7+6+PBBRhttaAdLAmgIR0ByfYKIBRyfdX2UKGgGR7/pGY0EX+ERaAdLCmgIR0BygwPOIInjdX2UKGgGR7+3ND+irT6SaAdLAmgIR0ByffV+Zw4sdX2UKGgGR7/Oo60Y0l7daAdLA2gIR0BycxIOH310dX2UKGgGR7/gJmmLtNSJaAdLBWgIR0ByeM1+AmRedX2UKGgGR7+dVmz0HyEtaAdLAWgIR0Byc05XEIgOdX2UKGgGR7/H0fYBeXzEaAdLA2gIR0Byg5me18b8dX2UKGgGR7/E1stTUAktaAdLAmgIR0ByfmCrcTJydX2UKGgGR792vbGm1pj+aAdLAWgIR0Byg8GKQ7tBdX2UKGgGR7/MGQCCBf8eaAdLA2gIR0ByeWK0lZ5idX2UKGgGR7/LFWn0kGA1aAdLA2gIR0ByfusHSncddX2UKGgGR7/ZrVOKwY+CaAdLBGgIR0BydAYEW69TdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3974, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9d9105fb50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9d910680c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686239310969633640, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACTtfurk0yDp14rA+rJ6MvcBZ0r5tdfi+OWYtvl45SD5R5fU80OLJvillRz6UNpc+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATcvkP0iykr6pgb+/hAlRP7IEE79Svai/8KgLP14uPj9q7XG+nplrvhZu8z59T5s/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAJO1+6uTTIOnXisD7ZnWg+bi4ZO7KsPD6snoy9wFnSvm11+L4j9KY/zsw1vG1cv785Zi2+XjlIPlHl9Tyy2QbANV7nP5Zvwb/Q4sm+KWVHPpQ2lz4bM4G/AqHoPyZ7Jz+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.00085156 0.00152745 0.34547773]\n [-0.06866202 -0.410841 -0.4852709 ]\n [-0.16933526 0.19553134 0.03001657]\n [-0.39430857 0.19472183 0.29533827]]", "desired_goal": "[[ 1.7874542 -0.28651643 -1.4961444 ]\n [ 0.81655145 -0.5742904 -1.3182776 ]\n [ 0.54554653 0.742895 -0.23625723]\n [-0.23007819 0.47544926 1.2133633 ]]", "observation": "[[-8.51557183e-04 1.52745016e-03 3.45477730e-01 2.27164641e-01\n 2.33736215e-03 1.84252530e-01]\n [-6.86620176e-02 -4.10840988e-01 -4.85270888e-01 1.30432546e+00\n -1.10961925e-02 -1.49500811e+00]\n [-1.69335261e-01 1.95531338e-01 3.00165731e-02 -2.10703707e+00\n 1.80756247e+00 -1.51121783e+00]\n [-3.94308567e-01 1.94721833e-01 2.95338273e-01 -1.00937212e+00\n 1.81741357e+00 6.54222846e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzpKEvdPBurtSx44+1pqIvcA+Dj41WBU+Av+APTW+FL35K00+pY69vdWJkb2860g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06473313 -0.00569938 0.27886444]\n [-0.06670158 0.13891125 0.1458443 ]\n [ 0.06298639 -0.03631421 0.20036305]\n [-0.09255723 -0.07106367 0.19621176]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv5Bun/DLr5aMAWyUSwGMAXSUR0B2eKYXwb2ldX2UKGgGR7/OH2ys0YTCaAdLA2gIR0B2c1fYzzmPdX2UKGgGR7+lpCa7VawEaAdLAWgIR0B2e4k7fYSQdX2UKGgGR7/QEIPbwjMWaAdLA2gIR0B2dk2Jiy6ddX2UKGgGR7/IUwi7kGRnaAdLA2gIR0B2eQ6CDmKZdX2UKGgGR7/bn8sMAmzCaAdLBGgIR0B2fCN5t3wDdX2UKGgGR7/Ax/NJOFg2aAdLAmgIR0B2eWVlf7aadX2UKGgGR7/Nn7pFCswMaAdLA2gIR0B2dsfbKzRhdX2UKGgGR7+3SSeRPoFFaAdLAmgIR0B2eaYhMajvdX2UKGgGR7/fYcebNKRMaAdLB2gIR0B2dFavA44qdX2UKGgGR7/Jkrf+CK77aAdLA2gIR0B2dymDUVi4dX2UKGgGR7/YShakhzNmaAdLBGgIR0B2fMMkQf6odX2UKGgGR7/BW4EwFkhBaAdLAmgIR0B2dLdhy8zzdX2UKGgGR7+enQ6ZH/cWaAdLAWgIR0B2fOg00m+kdX2UKGgGR7/L/6wdKdxyaAdLA2gIR0B2eirLhaTwdX2UKGgGR7/BQVKwpvxZaAdLAmgIR0B2d40EX+ERdX2UKGgGR7+8xzq8lHBlaAdLAmgIR0B2dQCjk+5fdX2UKGgGR7+1fG+9Jz1caAdLAmgIR0B2d9UADJU6dX2UKGgGR7/OdDIBBAv+aAdLA2gIR0B2epNahYeUdX2UKGgGR7+6u0TlDF6zaAdLAmgIR0B2dURFqi48dX2UKGgGR7/XWBz3h4t6aAdLBGgIR0B2fYeZG8VYdX2UKGgGR7/I7YkE9t/GaAdLA2gIR0B2ewYIjW07dX2UKGgGR7/IXu3MINVjaAdLA2gIR0B2dbcvduYQdX2UKGgGR7/QRsdkrf+CaAdLA2gIR0B2feiEg4ffdX2UKGgGR7/UI6r/82rGaAdLBWgIR0B2eIsRQJokdX2UKGgGR7++3azu4PPLaAdLAmgIR0B2dfjghr31dX2UKGgGR7/ZDUExIre7aAdLBGgIR0B2e5fpljEvdX2UKGgGR7/bRceKbaysaAdLBGgIR0B2fnovBacJdX2UKGgGR7+YcaOxSpBHaAdLAWgIR0B2e7wd8zAOdX2UKGgGR7/VNG3F1jiGaAdLBGgIR0B2eR6Rhc7hdX2UKGgGR7/URW912aDxaAdLA2gIR0B2dm4LCvX9dX2UKGgGR7/D4zrNW2gGaAdLA2gIR0B2fuuwHJLedX2UKGgGR7/PAhStNi6QaAdLA2gIR0B2fC2MKkVOdX2UKGgGR7/MN70Fr2xqaAdLA2gIR0B2eY/5ckdFdX2UKGgGR7/MhbnoxHoYaAdLA2gIR0B2dt9Cu2ZzdX2UKGgGR7+78R+SbH6uaAdLAmgIR0B2fG8XenAJdX2UKGgGR7/SSG8Empl0aAdLA2gIR0B2efBUJfICdX2UKGgGR7/TdYnv2GqQaAdLBGgIR0B2f3IhhYvGdX2UKGgGR7/EMsH0K7ZnaAdLAmgIR0B2fLTspobodX2UKGgGR7/ZxJul41P4aAdLBGgIR0B2d2fmLcbjdX2UKGgGR7+8c4o7V8TjaAdLAmgIR0B2ek3dbgTAdX2UKGgGR7/CPEKmbb1zaAdLAmgIR0B2fQ0tRNypdX2UKGgGR7/B3YcvM8oyaAdLAmgIR0B2d78baRISdX2UKGgGR7/NrCWNWEK3aAdLA2gIR0B2f/B3zMA4dX2UKGgGR7/BR2KVII4VaAdLAmgIR0B2fVCojv/jdX2UKGgGR7/OUXYUWVNYaAdLA2gIR0B2erRYzSCwdX2UKGgGR7+2CXhOxjaxaAdLAmgIR0B2gDLMcIZ7dX2UKGgGR7/LfMwDeTFEaAdLA2gIR0B2eCVZ9uxbdX2UKGgGR7+/LowEhaC+aAdLAmgIR0B2gIfzSThYdX2UKGgGR7/BNnoPkJa8aAdLAmgIR0B2eHvphWo4dX2UKGgGR7/aiSq2jO9naAdLBGgIR0B2fe97F85TdX2UKGgGR7/W79Q40dilaAdLBWgIR0B2e3BbfP5YdX2UKGgGR7+1iG34Kx9oaAdLAmgIR0B2eMGSpzcRdX2UKGgGR7/JX05EMLF5aAdLA2gIR0B2gPHS4OMEdX2UKGgGR7+/K7qY7aIvaAdLAmgIR0B2e8rYoRZmdX2UKGgGR7++QfZElVtGaAdLAmgIR0B2eRq/M4cWdX2UKGgGR7/Zq9oN/e+FaAdLBGgIR0B2foyad+XrdX2UKGgGR7/Xl3yI55quaAdLBGgIR0B2gY10knkUdX2UKGgGR7/I6y0KJEYwaAdLA2gIR0B2eX+kxh2GdX2UKGgGR7/VfI0ZWJaaaAdLBGgIR0B2fFFz+3pfdX2UKGgGR7/BTy8SPEKmaAdLAmgIR0B2geLEUCaJdX2UKGgGR7/aUvf0mMOxaAdLBGgIR0B2fyTzND+jdX2UKGgGR7/UAjIJZ4fPaAdLA2gIR0B2fMGW2PT5dX2UKGgGR7/OBsANoakzaAdLBGgIR0B2ehD1GsmwdX2UKGgGR7/KE2YOUdJbaAdLA2gIR0B2f4FgUlAvdX2UKGgGR7/Tv99+gDigaAdLBWgIR0B2gpARkEs8dX2UKGgGR7/JRrrPdEb6aAdLA2gIR0B2f/Cl7+kydX2UKGgGR7+52fTTfBN3aAdLAmgIR0B2gs7o0Q9SdX2UKGgGR7/ZwSrYGt6paAdLBWgIR0B2fXGhmGucdX2UKGgGR7/VlKbrkbPyaAdLBWgIR0B2esDZDiOvdX2UKGgGR7+4JqqOtGNJaAdLAmgIR0B2gw7FKkEcdX2UKGgGR7/LMNc4YJmeaAdLA2gIR0B2gFFCswL3dX2UKGgGR7/CRQrMC9ytaAdLAmgIR0B2ewOFxn3+dX2UKGgGR7/S8jiXIEKWaAdLA2gIR0B2fem3vx6OdX2UKGgGR7+0lkYoAn2JaAdLAmgIR0B2e1YlpoK2dX2UKGgGR7/S/Lkjopx4aAdLBGgIR0B2g6RmseXBdX2UKGgGR7/cKL876pHaaAdLBGgIR0B2gOb7TDwZdX2UKGgGR7/VposZpBX0aAdLBGgIR0B2fmkP+XJHdX2UKGgGR7+9mVZ9uxbCaAdLAmgIR0B2gTpbD/EPdX2UKGgGR7/TYl6Z6UqyaAdLBGgIR0B2e+n1nM+vdX2UKGgGR7+2cQRPGhmHaAdLAmgIR0B2fr3K0UoKdX2UKGgGR7/g6TOgQHzIaAdLBGgIR0B2hDr9l2/0dX2UKGgGR7/CKMNtqHoHaAdLAmgIR0B2fvtjTa0ydX2UKGgGR7/JuMMqjJuEaAdLA2gIR0B2fEsBhhH9dX2UKGgGR7+7dpItlI3BaAdLAmgIR0B2hHqs2eg+dX2UKGgGR7/IFW4mTkhiaAdLBGgIR0B2gbybx3FDdX2UKGgGR7+lNQCSzPa+aAdLAWgIR0B2fx7zCk44dX2UKGgGR7+/lXA/LTx5aAdLAmgIR0B2ghgnc+JQdX2UKGgGR7/ABOpKjBVNaAdLA2gIR0B2fMk5ZKWcdX2UKGgGR7/FpUxVQyh0aAdLA2gIR0B2f5waR6njdX2UKGgGR7/UZTAFgUlBaAdLBWgIR0B2hTkOqebvdX2UKGgGR7/E+pwS8J2MaAdLA2gIR0B2gnvBrN4adX2UKGgGR7/M1qnFYMfBaAdLA2gIR0B2fSzOX3QEdX2UKGgGR7/MTN+so2GZaAdLA2gIR0B2gBKvmozfdX2UKGgGR7+kSoOx0MgEaAdLAWgIR0B2fWPdVNpNdX2UKGgGR7/LUH6dlNDdaAdLA2gIR0B2hbRArxy5dX2UKGgGR7/Qy5I6Kcd6aAdLA2gIR0B2gvnuAqd6dX2UKGgGR7/L46fapPykaAdLA2gIR0B2gIfCAMDwdX2UKGgGR7/SnlGPPszEaAdLA2gIR0B2fdcGC7K8dX2UKGgGR7/EI68xsVL0aAdLAmgIR0B2hgYR/ViGdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a13", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -0.25809289999999996, "std_reward": 0.12599486341629168, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-10T13:28:31.373861"}
 
1
+ {"mean_reward": -0.24156531924381852, "std_reward": 0.13756466268953824, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-08T16:05:49.646833"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fba557c9e2c2e0506120d0e41114b972ef6e2586c4cfe742772e0912a2159695
3
- size 2553
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a0b567ba970e599b2740d635f54ed833f3bfaa99a30c1966bed1b2e2bf322a6
3
+ size 2570