ThomasSimonini HF staff commited on
Commit
505f4a2
1 Parent(s): 29a12ab

Test commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TQC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -15.19 +/- 3.25
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TQC** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **TQC** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5798173dd504a519133aecdf118a02bca65f7ee0ced6dc66a127cc13fca5143
3
+ size 105179
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4e2f304ca0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f4e2f300540>"
10
+ },
11
+ "verbose": 0,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 1,
44
+ "num_timesteps": 10000,
45
+ "_total_timesteps": 10000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1672434881350440358,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAAxLqvbboFD032js+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
60
+ "desired_goal": "[[-0.11429217 0.03635474 0.18344961]]",
61
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": null,
68
+ "_episode_num": 0,
69
+ "use_sde": false,
70
+ "sde_sample_freq": -1,
71
+ "_current_progress_remaining": 0.0,
72
+ "ep_info_buffer": {
73
+ ":type:": "<class 'collections.deque'>",
74
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyAkTRrOyK8CUhpRSlIwBbJRLMowBdJRHQDdctRNyo4x1fZQoaAZoCWgPQwi71XPS+74hwJSGlFKUaBVLMmgWR0A3mzzErGzbdX2UKGgGaAloD0MIOxixTwA1I8CUhpRSlGgVSzJoFkdAN9NdAxBVuXV9lChoBmgJaA9DCMvZO6OtWh7AlIaUUpRoFUsyaBZHQDgK8Fpwjt51fZQoaAZoCWgPQwjXh/VGrWggwJSGlFKUaBVLMmgWR0A4StwrDqGDdX2UKGgGaAloD0MIHSCYo8enIcCUhpRSlGgVSzJoFkdAOIKm4y44InV9lChoBmgJaA9DCAfr/xzmexvAlIaUUpRoFUsyaBZHQDi1wuM+/xl1fZQoaAZoCWgPQwhFYoIavq0lwJSGlFKUaBVLMmgWR0A48Fm4AjptdX2UKGgGaAloD0MII0kQroBaMcCUhpRSlGgVSzJoFkdAOS1AJLM9sHV9lChoBmgJaA9DCLsmpDUGvSvAlIaUUpRoFUsyaBZHQDlp+2E0zj51fZQoaAZoCWgPQwi1N/jCZLoUwJSGlFKUaBVLMmgWR0A5pdYGMXJpdX2UKGgGaAloD0MI4h3gSQsPLMCUhpRSlGgVSzJoFkdAOd4pH7P6bnV9lChoBmgJaA9DCD+LpUi+fjTAlIaUUpRoFUsyaBZHQDoXPdEb5uZ1fZQoaAZoCWgPQwibq+Y5ImcvwJSGlFKUaBVLMmgWR0A6U4//vOQhdX2UKGgGaAloD0MIYRvxZDerKsCUhpRSlGgVSzJoFkdAOo/VVghKUXV9lChoBmgJaA9DCBAiGXJsvSTAlIaUUpRoFUsyaBZHQDrL4wh4dIZ1fZQoaAZoCWgPQwiJz51g/8UgwJSGlFKUaBVLMmgWR0A7BVFhG6PKdX2UKGgGaAloD0MITaHzGruUG8CUhpRSlGgVSzJoFkdAOzuCf6Ggz3V9lChoBmgJaA9DCP2H9NvXgRXAlIaUUpRoFUsyaBZHQDt10vGp++d1fZQoaAZoCWgPQwiyu0BJgS0nwJSGlFKUaBVLMmgWR0A7rguAZsKtdX2UKGgGaAloD0MIFvn1Q2zQLsCUhpRSlGgVSzJoFkdAO+kXpGFzuHV9lChoBmgJaA9DCCQnE7cKrjDAlIaUUpRoFUsyaBZHQDwoJqqOtGN1fZQoaAZoCWgPQwhC7bd2ogQcwJSGlFKUaBVLMmgWR0A8YJ+UhV2idX2UKGgGaAloD0MIaoXpew3xHcCUhpRSlGgVSzJoFkdAPJ/wiJO32HV9lChoBmgJaA9DCAJjfQOTcyjAlIaUUpRoFUsyaBZHQDzfbL2YfGN1fZQoaAZoCWgPQwiZLVkV4Z4nwJSGlFKUaBVLMmgWR0A9G/io86mwdX2UKGgGaAloD0MIic+dYP+lJcCUhpRSlGgVSzJoFkdAPVgNgBtDUnV9lChoBmgJaA9DCBpQb0bN3zTAlIaUUpRoFUsyaBZHQD2TMqz7di51fZQoaAZoCWgPQwjU0twKYd0zwJSGlFKUaBVLMmgWR0A9yuEmICU5dX2UKGgGaAloD0MILXx9rUuFLcCUhpRSlGgVSzJoFkdAPgLteD3/P3V9lChoBmgJaA9DCIbGE0GcVzDAlIaUUpRoFUsyaBZHQD44F6iTMaF1fZQoaAZoCWgPQwjAlleutxUnwJSGlFKUaBVLMmgWR0A+bg0TDfm+dX2UKGgGaAloD0MIO4kI/yJgLcCUhpRSlGgVSzJoFkdAPqNMGorFwXV9lChoBmgJaA9DCCi5wyYy4ybAlIaUUpRoFUsyaBZHQD7YY8+zMRp1fZQoaAZoCWgPQwgbSu1FtC0xwJSGlFKUaBVLMmgWR0A/D3jdYW+HdX2UKGgGaAloD0MIO6dZoN05KsCUhpRSlGgVSzJoFkdAP0LJr+Hae3V9lChoBmgJaA9DCH5wPnWsWjPAlIaUUpRoFUsyaBZHQD98FFDv3Jx1fZQoaAZoCWgPQwgzp8tiYoMnwJSGlFKUaBVLMmgWR0A/sHGjsUqQdX2UKGgGaAloD0MIdcsO8Q9zL8CUhpRSlGgVSzJoFkdAP+NkauOjqXV9lChoBmgJaA9DCDZ4X5ULNS3AlIaUUpRoFUsyaBZHQEANosZpBX11fZQoaAZoCWgPQwjaxTTTvV4owJSGlFKUaBVLMmgWR0BAKn31zySWdX2UKGgGaAloD0MI6PnTRnXGMMCUhpRSlGgVSzJoFkdAQEaCg9Net3V9lChoBmgJaA9DCM4ckloo0TDAlIaUUpRoFUsyaBZHQEBjSkTHsC11fZQoaAZoCWgPQwgTKji8IKomwJSGlFKUaBVLMmgWR0BAfqjSG8EndX2UKGgGaAloD0MIGt1B7ExRK8CUhpRSlGgVSzJoFkdAQJsyBTXJ5nV9lChoBmgJaA9DCJ2huONNHiTAlIaUUpRoFUsyaBZHQEC5LDhtLth1fZQoaAZoCWgPQwjK+s3EdKExwJSGlFKUaBVLMmgWR0BA1pIMBp6AdX2UKGgGaAloD0MIlgoqqn69KcCUhpRSlGgVSzJoFkdAQPHLeQ+2VnV9lChoBmgJaA9DCH2W58Hd4SXAlIaUUpRoFUsyaBZHQEENhKDkELZ1fZQoaAZoCWgPQwhszsEzoQEhwJSGlFKUaBVLMmgWR0BBLEpiI+GHdX2UKGgGaAloD0MINUI/U68LHMCUhpRSlGgVSzJoFkdAQUfnOjZcs3V9lChoBmgJaA9DCGd/oNy27y/AlIaUUpRoFUsyaBZHQEFkP07KaG51fZQoaAZoCWgPQwhcOXtntBUkwJSGlFKUaBVLMmgWR0BBfsbWEsasdX2UKGgGaAloD0MI91llprS2K8CUhpRSlGgVSzJoFkdAQZxvgm7aqXV9lChoBmgJaA9DCHv18dB3RyfAlIaUUpRoFUsyaBZHQEG8b4Ju2ql1fZQoaAZoCWgPQwgdPBOaJHYtwJSGlFKUaBVLMmgWR0BB1xhUipvQdX2UKGgGaAloD0MIUYU/w5tNK8CUhpRSlGgVSzJoFkdAQfN2mpEQXnV9lChoBmgJaA9DCIkl5e5zNDHAlIaUUpRoFUsyaBZHQEIQya/h2nt1fZQoaAZoCWgPQwgawjHLnlQuwJSGlFKUaBVLMmgWR0BCMAH3UQTVdX2UKGgGaAloD0MIvviiPV6AK8CUhpRSlGgVSzJoFkdAQkvYDklu33V9lChoBmgJaA9DCF8Lem8M6THAlIaUUpRoFUsyaBZHQEJm8W9DhLp1fZQoaAZoCWgPQwhkk/yIX5kgwJSGlFKUaBVLMmgWR0BCf4j0L+gldX2UKGgGaAloD0MI6LzGLlGxMcCUhpRSlGgVSzJoFkdAQppq7Ackt3V9lChoBmgJaA9DCKLtmLorQzHAlIaUUpRoFUsyaBZHQEK0+zt1IRR1fZQoaAZoCWgPQwiZ2ecxytMZwJSGlFKUaBVLMmgWR0BCzqSPluFYdX2UKGgGaAloD0MIv+5054knJ8CUhpRSlGgVSzJoFkdAQugXuVopQXV9lChoBmgJaA9DCEVJSKRtFCfAlIaUUpRoFUsyaBZHQEMDbg0j1PF1fZQoaAZoCWgPQwjCTUaVYRwuwJSGlFKUaBVLMmgWR0BDHtRFZxJedX2UKGgGaAloD0MIiUM2kC6WJ8CUhpRSlGgVSzJoFkdAQztqBVdX1nV9lChoBmgJaA9DCLOz6J0K0CzAlIaUUpRoFUsyaBZHQENWl67dzn11fZQoaAZoCWgPQwhbe5+qQgMowJSGlFKUaBVLMmgWR0BDcUNSZSeidX2UKGgGaAloD0MIfqmfNxWJJcCUhpRSlGgVSzJoFkdAQ4o1pCa7VnV9lChoBmgJaA9DCAithy8T0TDAlIaUUpRoFUsyaBZHQEOlXYlIEr51fZQoaAZoCWgPQwhxdQDEXb0wwJSGlFKUaBVLMmgWR0BDwL0aqCHzdX2UKGgGaAloD0MI4Q1pVOAUK8CUhpRSlGgVSzJoFkdAQ9kK1G9YfXV9lChoBmgJaA9DCIY3a/C+0jDAlIaUUpRoFUsyaBZHQEPx238XN1R1fZQoaAZoCWgPQwiorKbriRYpwJSGlFKUaBVLMmgWR0BEDDArQPZqdX2UKGgGaAloD0MIWaMeotEtKsCUhpRSlGgVSzJoFkdARCyUNayKN3V9lChoBmgJaA9DCM4Xey++xDDAlIaUUpRoFUsyaBZHQERJwZwXIlt1fZQoaAZoCWgPQwgjMNY3MAkdwJSGlFKUaBVLMmgWR0BEY3mNipeedX2UKGgGaAloD0MIgNQmTu7PKsCUhpRSlGgVSzJoFkdARH/YvnKW9nV9lChoBmgJaA9DCAa8zLBRliHAlIaUUpRoFUsyaBZHQESZrfLs8gZ1fZQoaAZoCWgPQwhKz/QSY5UywJSGlFKUaBVLMmgWR0BEtgOz6ab4dX2UKGgGaAloD0MIgUHSp1W0KcCUhpRSlGgVSzJoFkdARM9b/wRXfnV9lChoBmgJaA9DCD57LlOT2CPAlIaUUpRoFUsyaBZHQEToYXO4XoF1fZQoaAZoCWgPQwiE04IXff0rwJSGlFKUaBVLMmgWR0BFA5S3solVdX2UKGgGaAloD0MIVkj5SbWfMcCUhpRSlGgVSzJoFkdARR5kTYdyUHV9lChoBmgJaA9DCFpIwOjytivAlIaUUpRoFUsyaBZHQEU5VxS5y2h1fZQoaAZoCWgPQwiMZmX7kCcawJSGlFKUaBVLMmgWR0BFU3UQTVUddX2UKGgGaAloD0MIFVW/0vkgJ8CUhpRSlGgVSzJoFkdARW3N1QqI8HV9lChoBmgJaA9DCGhCk8SSCiHAlIaUUpRoFUsyaBZHQEWHwe/5+H91fZQoaAZoCWgPQwgBMQkX8uAiwJSGlFKUaBVLMmgWR0BFoc3EQ5FPdX2UKGgGaAloD0MI1J0nnrN5McCUhpRSlGgVSzJoFkdARb6jgydnTXV9lChoBmgJaA9DCG3i5H6HajHAlIaUUpRoFUsyaBZHQEXYzAvcrRV1fZQoaAZoCWgPQwi5UPnX8jIowJSGlFKUaBVLMmgWR0BF8fgR9PUKdX2UKGgGaAloD0MIiJ6USQ2lKsCUhpRSlGgVSzJoFkdARgwaaTfR/nV9lChoBmgJaA9DCH0geedQLifAlIaUUpRoFUsyaBZHQEYm0hNdqtZ1fZQoaAZoCWgPQwjE6/oFu7kjwJSGlFKUaBVLMmgWR0BGQp8neBQOdX2UKGgGaAloD0MIBOj3/Zu3KcCUhpRSlGgVSzJoFkdARl9oHs1KoXV9lChoBmgJaA9DCK0yU1p/oyjAlIaUUpRoFUsyaBZHQEZ5iaRZED11ZS4="
75
+ },
76
+ "ep_success_buffer": {
77
+ ":type:": "<class 'collections.deque'>",
78
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
79
+ },
80
+ "_n_updates": 2000,
81
+ "n_steps": 5,
82
+ "gamma": 0.99,
83
+ "gae_lambda": 1.0,
84
+ "ent_coef": 0.0,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "normalize_advantage": false
88
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7aad3dcc526a112be26db1f4b4febdd396a3dc2195166f4a49eb97cfbc38b17a
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48d5342ef0492fd5a06eeea91a78920985efefae589c4817fde1509a22f6c2ab
3
+ size 45374
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4e2f304ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4e2f300540>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 10000, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672434881350440358, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAAxLqvbboFD032js+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11429217 0.03635474 0.18344961]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyAkTRrOyK8CUhpRSlIwBbJRLMowBdJRHQDdctRNyo4x1fZQoaAZoCWgPQwi71XPS+74hwJSGlFKUaBVLMmgWR0A3mzzErGzbdX2UKGgGaAloD0MIOxixTwA1I8CUhpRSlGgVSzJoFkdAN9NdAxBVuXV9lChoBmgJaA9DCMvZO6OtWh7AlIaUUpRoFUsyaBZHQDgK8Fpwjt51fZQoaAZoCWgPQwjXh/VGrWggwJSGlFKUaBVLMmgWR0A4StwrDqGDdX2UKGgGaAloD0MIHSCYo8enIcCUhpRSlGgVSzJoFkdAOIKm4y44InV9lChoBmgJaA9DCAfr/xzmexvAlIaUUpRoFUsyaBZHQDi1wuM+/xl1fZQoaAZoCWgPQwhFYoIavq0lwJSGlFKUaBVLMmgWR0A48Fm4AjptdX2UKGgGaAloD0MII0kQroBaMcCUhpRSlGgVSzJoFkdAOS1AJLM9sHV9lChoBmgJaA9DCLsmpDUGvSvAlIaUUpRoFUsyaBZHQDlp+2E0zj51fZQoaAZoCWgPQwi1N/jCZLoUwJSGlFKUaBVLMmgWR0A5pdYGMXJpdX2UKGgGaAloD0MI4h3gSQsPLMCUhpRSlGgVSzJoFkdAOd4pH7P6bnV9lChoBmgJaA9DCD+LpUi+fjTAlIaUUpRoFUsyaBZHQDoXPdEb5uZ1fZQoaAZoCWgPQwibq+Y5ImcvwJSGlFKUaBVLMmgWR0A6U4//vOQhdX2UKGgGaAloD0MIYRvxZDerKsCUhpRSlGgVSzJoFkdAOo/VVghKUXV9lChoBmgJaA9DCBAiGXJsvSTAlIaUUpRoFUsyaBZHQDrL4wh4dIZ1fZQoaAZoCWgPQwiJz51g/8UgwJSGlFKUaBVLMmgWR0A7BVFhG6PKdX2UKGgGaAloD0MITaHzGruUG8CUhpRSlGgVSzJoFkdAOzuCf6Ggz3V9lChoBmgJaA9DCP2H9NvXgRXAlIaUUpRoFUsyaBZHQDt10vGp++d1fZQoaAZoCWgPQwiyu0BJgS0nwJSGlFKUaBVLMmgWR0A7rguAZsKtdX2UKGgGaAloD0MIFvn1Q2zQLsCUhpRSlGgVSzJoFkdAO+kXpGFzuHV9lChoBmgJaA9DCCQnE7cKrjDAlIaUUpRoFUsyaBZHQDwoJqqOtGN1fZQoaAZoCWgPQwhC7bd2ogQcwJSGlFKUaBVLMmgWR0A8YJ+UhV2idX2UKGgGaAloD0MIaoXpew3xHcCUhpRSlGgVSzJoFkdAPJ/wiJO32HV9lChoBmgJaA9DCAJjfQOTcyjAlIaUUpRoFUsyaBZHQDzfbL2YfGN1fZQoaAZoCWgPQwiZLVkV4Z4nwJSGlFKUaBVLMmgWR0A9G/io86mwdX2UKGgGaAloD0MIic+dYP+lJcCUhpRSlGgVSzJoFkdAPVgNgBtDUnV9lChoBmgJaA9DCBpQb0bN3zTAlIaUUpRoFUsyaBZHQD2TMqz7di51fZQoaAZoCWgPQwjU0twKYd0zwJSGlFKUaBVLMmgWR0A9yuEmICU5dX2UKGgGaAloD0MILXx9rUuFLcCUhpRSlGgVSzJoFkdAPgLteD3/P3V9lChoBmgJaA9DCIbGE0GcVzDAlIaUUpRoFUsyaBZHQD44F6iTMaF1fZQoaAZoCWgPQwjAlleutxUnwJSGlFKUaBVLMmgWR0A+bg0TDfm+dX2UKGgGaAloD0MIO4kI/yJgLcCUhpRSlGgVSzJoFkdAPqNMGorFwXV9lChoBmgJaA9DCCi5wyYy4ybAlIaUUpRoFUsyaBZHQD7YY8+zMRp1fZQoaAZoCWgPQwgbSu1FtC0xwJSGlFKUaBVLMmgWR0A/D3jdYW+HdX2UKGgGaAloD0MIO6dZoN05KsCUhpRSlGgVSzJoFkdAP0LJr+Hae3V9lChoBmgJaA9DCH5wPnWsWjPAlIaUUpRoFUsyaBZHQD98FFDv3Jx1fZQoaAZoCWgPQwgzp8tiYoMnwJSGlFKUaBVLMmgWR0A/sHGjsUqQdX2UKGgGaAloD0MIdcsO8Q9zL8CUhpRSlGgVSzJoFkdAP+NkauOjqXV9lChoBmgJaA9DCDZ4X5ULNS3AlIaUUpRoFUsyaBZHQEANosZpBX11fZQoaAZoCWgPQwjaxTTTvV4owJSGlFKUaBVLMmgWR0BAKn31zySWdX2UKGgGaAloD0MI6PnTRnXGMMCUhpRSlGgVSzJoFkdAQEaCg9Net3V9lChoBmgJaA9DCM4ckloo0TDAlIaUUpRoFUsyaBZHQEBjSkTHsC11fZQoaAZoCWgPQwgTKji8IKomwJSGlFKUaBVLMmgWR0BAfqjSG8EndX2UKGgGaAloD0MIGt1B7ExRK8CUhpRSlGgVSzJoFkdAQJsyBTXJ5nV9lChoBmgJaA9DCJ2huONNHiTAlIaUUpRoFUsyaBZHQEC5LDhtLth1fZQoaAZoCWgPQwjK+s3EdKExwJSGlFKUaBVLMmgWR0BA1pIMBp6AdX2UKGgGaAloD0MIlgoqqn69KcCUhpRSlGgVSzJoFkdAQPHLeQ+2VnV9lChoBmgJaA9DCH2W58Hd4SXAlIaUUpRoFUsyaBZHQEENhKDkELZ1fZQoaAZoCWgPQwhszsEzoQEhwJSGlFKUaBVLMmgWR0BBLEpiI+GHdX2UKGgGaAloD0MINUI/U68LHMCUhpRSlGgVSzJoFkdAQUfnOjZcs3V9lChoBmgJaA9DCGd/oNy27y/AlIaUUpRoFUsyaBZHQEFkP07KaG51fZQoaAZoCWgPQwhcOXtntBUkwJSGlFKUaBVLMmgWR0BBfsbWEsasdX2UKGgGaAloD0MI91llprS2K8CUhpRSlGgVSzJoFkdAQZxvgm7aqXV9lChoBmgJaA9DCHv18dB3RyfAlIaUUpRoFUsyaBZHQEG8b4Ju2ql1fZQoaAZoCWgPQwgdPBOaJHYtwJSGlFKUaBVLMmgWR0BB1xhUipvQdX2UKGgGaAloD0MIUYU/w5tNK8CUhpRSlGgVSzJoFkdAQfN2mpEQXnV9lChoBmgJaA9DCIkl5e5zNDHAlIaUUpRoFUsyaBZHQEIQya/h2nt1fZQoaAZoCWgPQwgawjHLnlQuwJSGlFKUaBVLMmgWR0BCMAH3UQTVdX2UKGgGaAloD0MIvviiPV6AK8CUhpRSlGgVSzJoFkdAQkvYDklu33V9lChoBmgJaA9DCF8Lem8M6THAlIaUUpRoFUsyaBZHQEJm8W9DhLp1fZQoaAZoCWgPQwhkk/yIX5kgwJSGlFKUaBVLMmgWR0BCf4j0L+gldX2UKGgGaAloD0MI6LzGLlGxMcCUhpRSlGgVSzJoFkdAQppq7Ackt3V9lChoBmgJaA9DCKLtmLorQzHAlIaUUpRoFUsyaBZHQEK0+zt1IRR1fZQoaAZoCWgPQwiZ2ecxytMZwJSGlFKUaBVLMmgWR0BCzqSPluFYdX2UKGgGaAloD0MIv+5054knJ8CUhpRSlGgVSzJoFkdAQugXuVopQXV9lChoBmgJaA9DCEVJSKRtFCfAlIaUUpRoFUsyaBZHQEMDbg0j1PF1fZQoaAZoCWgPQwjCTUaVYRwuwJSGlFKUaBVLMmgWR0BDHtRFZxJedX2UKGgGaAloD0MIiUM2kC6WJ8CUhpRSlGgVSzJoFkdAQztqBVdX1nV9lChoBmgJaA9DCLOz6J0K0CzAlIaUUpRoFUsyaBZHQENWl67dzn11fZQoaAZoCWgPQwhbe5+qQgMowJSGlFKUaBVLMmgWR0BDcUNSZSeidX2UKGgGaAloD0MIfqmfNxWJJcCUhpRSlGgVSzJoFkdAQ4o1pCa7VnV9lChoBmgJaA9DCAithy8T0TDAlIaUUpRoFUsyaBZHQEOlXYlIEr51fZQoaAZoCWgPQwhxdQDEXb0wwJSGlFKUaBVLMmgWR0BDwL0aqCHzdX2UKGgGaAloD0MI4Q1pVOAUK8CUhpRSlGgVSzJoFkdAQ9kK1G9YfXV9lChoBmgJaA9DCIY3a/C+0jDAlIaUUpRoFUsyaBZHQEPx238XN1R1fZQoaAZoCWgPQwiorKbriRYpwJSGlFKUaBVLMmgWR0BEDDArQPZqdX2UKGgGaAloD0MIWaMeotEtKsCUhpRSlGgVSzJoFkdARCyUNayKN3V9lChoBmgJaA9DCM4Xey++xDDAlIaUUpRoFUsyaBZHQERJwZwXIlt1fZQoaAZoCWgPQwgjMNY3MAkdwJSGlFKUaBVLMmgWR0BEY3mNipeedX2UKGgGaAloD0MIgNQmTu7PKsCUhpRSlGgVSzJoFkdARH/YvnKW9nV9lChoBmgJaA9DCAa8zLBRliHAlIaUUpRoFUsyaBZHQESZrfLs8gZ1fZQoaAZoCWgPQwhKz/QSY5UywJSGlFKUaBVLMmgWR0BEtgOz6ab4dX2UKGgGaAloD0MIgUHSp1W0KcCUhpRSlGgVSzJoFkdARM9b/wRXfnV9lChoBmgJaA9DCD57LlOT2CPAlIaUUpRoFUsyaBZHQEToYXO4XoF1fZQoaAZoCWgPQwiE04IXff0rwJSGlFKUaBVLMmgWR0BFA5S3solVdX2UKGgGaAloD0MIVkj5SbWfMcCUhpRSlGgVSzJoFkdARR5kTYdyUHV9lChoBmgJaA9DCFpIwOjytivAlIaUUpRoFUsyaBZHQEU5VxS5y2h1fZQoaAZoCWgPQwiMZmX7kCcawJSGlFKUaBVLMmgWR0BFU3UQTVUddX2UKGgGaAloD0MIFVW/0vkgJ8CUhpRSlGgVSzJoFkdARW3N1QqI8HV9lChoBmgJaA9DCGhCk8SSCiHAlIaUUpRoFUsyaBZHQEWHwe/5+H91fZQoaAZoCWgPQwgBMQkX8uAiwJSGlFKUaBVLMmgWR0BFoc3EQ5FPdX2UKGgGaAloD0MI1J0nnrN5McCUhpRSlGgVSzJoFkdARb6jgydnTXV9lChoBmgJaA9DCG3i5H6HajHAlIaUUpRoFUsyaBZHQEXYzAvcrRV1fZQoaAZoCWgPQwi5UPnX8jIowJSGlFKUaBVLMmgWR0BF8fgR9PUKdX2UKGgGaAloD0MIiJ6USQ2lKsCUhpRSlGgVSzJoFkdARgwaaTfR/nV9lChoBmgJaA9DCH0geedQLifAlIaUUpRoFUsyaBZHQEYm0hNdqtZ1fZQoaAZoCWgPQwjE6/oFu7kjwJSGlFKUaBVLMmgWR0BGQp8neBQOdX2UKGgGaAloD0MIBOj3/Zu3KcCUhpRSlGgVSzJoFkdARl9oHs1KoXV9lChoBmgJaA9DCK0yU1p/oyjAlIaUUpRoFUsyaBZHQEZ5iaRZED11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (636 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -15.1895117, "std_reward": 3.2469981848517273, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-30T21:15:54.564057"}