ThoMyh commited on
Commit
22abbb7
·
verified ·
1 Parent(s): dc0e8c4

End of training

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert/distilbert-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ model-index:
10
+ - name: distilBert_cased_for_binary_sentiment_classification
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # distilBert_cased_for_binary_sentiment_classification
18
+
19
+ This model is a fine-tuned version of [distilbert/distilbert-base-cased](https://huggingface.co/distilbert/distilbert-base-cased) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2352
22
+ - Accuracy: 0.923
23
+ - F1: 0.9199
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 2e-05
43
+ - train_batch_size: 16
44
+ - eval_batch_size: 16
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 2
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
54
+ | 0.2856 | 1.0 | 1000 | 0.2463 | 0.913 | 0.9096 |
55
+ | 0.2074 | 2.0 | 2000 | 0.2352 | 0.923 | 0.9199 |
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.39.3
61
+ - Pytorch 2.2.2
62
+ - Datasets 2.18.0
63
+ - Tokenizers 0.15.2