Thienpkae commited on
Commit
8321124
·
verified ·
1 Parent(s): 36809a9

End of training

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - vivos
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: wav2vec2-augmented-vivos
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: vivos
18
+ type: vivos
19
+ config: default
20
+ split: None
21
+ args: default
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.2447200155008719
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # wav2vec2-augmented-vivos
32
+
33
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.4403
36
+ - Wer: 0.2447
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0002
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 128
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: cosine
63
+ - lr_scheduler_warmup_ratio: 0.3
64
+ - num_epochs: 20
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
70
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
71
+ | 6.6691 | 2.0 | 146 | 4.0324 | 1.0 |
72
+ | 3.4795 | 4.0 | 292 | 3.6294 | 1.0 |
73
+ | 3.4178 | 6.0 | 438 | 3.4910 | 1.0 |
74
+ | 1.8415 | 8.0 | 584 | 0.7926 | 0.5287 |
75
+ | 0.5336 | 10.0 | 730 | 0.5809 | 0.3677 |
76
+ | 0.3349 | 12.0 | 876 | 0.4679 | 0.2853 |
77
+ | 0.2424 | 14.0 | 1022 | 0.4440 | 0.2680 |
78
+ | 0.2193 | 16.0 | 1168 | 0.4420 | 0.2536 |
79
+ | 0.1627 | 18.0 | 1314 | 0.4373 | 0.2455 |
80
+ | 0.1532 | 20.0 | 1460 | 0.4403 | 0.2447 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.44.0
86
+ - Pytorch 2.4.0
87
+ - Datasets 2.21.0
88
+ - Tokenizers 0.19.1