Theivaprakasham commited on
Commit
e9d46aa
·
1 Parent(s): d38a2b9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - sroie
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: layoutlmv3-finetuned-invoice
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: sroie
19
+ type: sroie
20
+ args: sroie
21
+ metrics:
22
+ - name: Precision
23
+ type: precision
24
+ value: 1.0
25
+ - name: Recall
26
+ type: recall
27
+ value: 1.0
28
+ - name: F1
29
+ type: f1
30
+ value: 1.0
31
+ - name: Accuracy
32
+ type: accuracy
33
+ value: 1.0
34
+ ---
35
+
36
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
37
+ should probably proofread and complete it, then remove this comment. -->
38
+
39
+ # layoutlmv3-finetuned-invoice
40
+
41
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset.
42
+ It achieves the following results on the evaluation set:
43
+ - Loss: 0.0012
44
+ - Precision: 1.0
45
+ - Recall: 1.0
46
+ - F1: 1.0
47
+ - Accuracy: 1.0
48
+
49
+ ## Model description
50
+
51
+ More information needed
52
+
53
+ ## Intended uses & limitations
54
+
55
+ More information needed
56
+
57
+ ## Training and evaluation data
58
+
59
+ More information needed
60
+
61
+ ## Training procedure
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 1e-05
67
+ - train_batch_size: 2
68
+ - eval_batch_size: 2
69
+ - seed: 42
70
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
+ - lr_scheduler_type: linear
72
+ - training_steps: 2000
73
+
74
+ ### Training results
75
+
76
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
+ | No log | 2.0 | 100 | 0.0878 | 0.968 | 0.9817 | 0.9748 | 0.9966 |
79
+ | No log | 4.0 | 200 | 0.0241 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
80
+ | No log | 6.0 | 300 | 0.0186 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
81
+ | No log | 8.0 | 400 | 0.0184 | 0.9854 | 0.9574 | 0.9712 | 0.9956 |
82
+ | 0.1308 | 10.0 | 500 | 0.0121 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
83
+ | 0.1308 | 12.0 | 600 | 0.0076 | 0.9939 | 0.9878 | 0.9908 | 0.9987 |
84
+ | 0.1308 | 14.0 | 700 | 0.0047 | 1.0 | 0.9959 | 0.9980 | 0.9996 |
85
+ | 0.1308 | 16.0 | 800 | 0.0036 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
86
+ | 0.1308 | 18.0 | 900 | 0.0045 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
87
+ | 0.0069 | 20.0 | 1000 | 0.0043 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
88
+ | 0.0069 | 22.0 | 1100 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 |
89
+ | 0.0069 | 24.0 | 1200 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 |
90
+ | 0.0069 | 26.0 | 1300 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 |
91
+ | 0.0069 | 28.0 | 1400 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 |
92
+ | 0.0026 | 30.0 | 1500 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
93
+ | 0.0026 | 32.0 | 1600 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
94
+ | 0.0026 | 34.0 | 1700 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 |
95
+ | 0.0026 | 36.0 | 1800 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 |
96
+ | 0.0026 | 38.0 | 1900 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 |
97
+ | 0.002 | 40.0 | 2000 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 |
98
+
99
+
100
+ ### Framework versions
101
+
102
+ - Transformers 4.20.0.dev0
103
+ - Pytorch 1.11.0+cu113
104
+ - Datasets 2.2.2
105
+ - Tokenizers 0.12.1