Upload PPO Lunar Lander trained model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-lunarlander-v2.zip +3 -0
- ppo-lunarlander-v2/_stable_baselines3_version +1 -0
- ppo-lunarlander-v2/data +91 -0
- ppo-lunarlander-v2/policy.optimizer.pth +3 -0
- ppo-lunarlander-v2/policy.pth +3 -0
- ppo-lunarlander-v2/pytorch_variables.pth +3 -0
- ppo-lunarlander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 283.31 +/- 18.32
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x1430dbc10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x1430dbca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x1430dbd30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x1430dbdc0>", "_build": "<function ActorCriticPolicy._build at 0x1430dbe50>", "forward": "<function ActorCriticPolicy.forward at 0x1430dbee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x1430dbf70>", "_predict": "<function ActorCriticPolicy._predict at 0x1430e2040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x1430e20d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x1430e2160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x1430e21f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x142db3480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 3100000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651819004.797436, "learning_rate": 0.0003, "tensorboard_log": "logs", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvdGhlYXZlYXNzby9taW5pZm9yZ2UzL2VudnMvaW50cm9STC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL3RoZWF2ZWFzc28vbWluaWZvcmdlMy9lbnZzL2ludHJvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.38007040000000003, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfSO6Z11fUECUhpRSlIwBbJRLtIwBdJRHQJnWkOEug6F1fZQoaAZoCWgPQwjpRlhUBOdwQJSGlFKUaBVL6mgWR0CZ1tZuAI6bdX2UKGgGaAloD0MIDykGSHTtcUCUhpRSlGgVS8RoFkdAmddUHdGiH3V9lChoBmgJaA9DCE1p/S2BcXJAlIaUUpRoFUvnaBZHQJnXkvwmVqx1fZQoaAZoCWgPQwgb17/rsw9xQJSGlFKUaBVLw2gWR0CZ18opQUHqdX2UKGgGaAloD0MIYDyDhr4RcUCUhpRSlGgVS9xoFkdAmdgIgzP8h3V9lChoBmgJaA9DCHXIzXAD6nBAlIaUUpRoFUvUaBZHQJnYO75Ec811fZQoaAZoCWgPQwi8eD9u//RwQJSGlFKUaBVL52gWR0CZ2LTPjXFtdX2UKGgGaAloD0MID7bY7bNfcECUhpRSlGgVS+VoFkdAmdjuKbayr3V9lChoBmgJaA9DCM/cQ8K3UHBAlIaUUpRoFU0NAWgWR0CZ2T3MINVjdX2UKGgGaAloD0MIFeP8TSjFb0CUhpRSlGgVS91oFkdAmdl5BPbfxnV9lChoBmgJaA9DCP9aXrle629AlIaUUpRoFUvSaBZHQJnZ9YLb5/N1fZQoaAZoCWgPQwha9iSweaxzQJSGlFKUaBVL1WgWR0CZ2jaBZpztdX2UKGgGaAloD0MIEmiwqTPYckCUhpRSlGgVS9NoFkdAmdpzWGyooHV9lChoBmgJaA9DCAh1kUJZLHFAlIaUUpRoFUv6aBZHQJnauMkyDZl1fZQoaAZoCWgPQwitp1ZfnURwQJSGlFKUaBVL4WgWR0CZ20Vfu1F6dX2UKGgGaAloD0MIlKMAUTDfO0CUhpRSlGgVS55oFkdAmdttepn6EnV9lChoBmgJaA9DCIlEoWXdTHBAlIaUUpRoFU0FAWgWR0CZ27iDdxhldX2UKGgGaAloD0MIAP4pVeINc0CUhpRSlGgVTQEBaBZHQJncAljVhCt1fZQoaAZoCWgPQwgIjsu46Z5xQJSGlFKUaBVL6GgWR0CZ3EabF0gbdX2UKGgGaAloD0MIqOSc2MP8b0CUhpRSlGgVS8ZoFkdAmdzD1GsmwHV9lChoBmgJaA9DCP3dO2pMSW9AlIaUUpRoFUvRaBZHQJnc+KFZgXx1fZQoaAZoCWgPQwiaQ1ILJXlxQJSGlFKUaBVL8WgWR0CZ3Tmplz2fdX2UKGgGaAloD0MINGYS9QL+cUCUhpRSlGgVTQwBaBZHQJndkMYuTRp1fZQoaAZoCWgPQwivXG+bKSpxQJSGlFKUaBVLymgWR0CZ3cPnSv1UdX2UKGgGaAloD0MI3KD2Wztqb0CUhpRSlGgVS9toFkdAmd47hm5DqnV9lChoBmgJaA9DCBqLprPTkHFAlIaUUpRoFUvjaBZHQJneebd8ArB1fZQoaAZoCWgPQwh9PzVeuitwQJSGlFKUaBVL3WgWR0CZ3roybhFWdX2UKGgGaAloD0MIkL3e/bGnckCUhpRSlGgVS/hoFkdAmd7987ZFonV9lChoBmgJaA9DCJ/kDptIO3BAlIaUUpRoFUvZaBZHQJnff8l5WzZ1fZQoaAZoCWgPQwj9E1ys6NNwQJSGlFKUaBVL8mgWR0CZ39blRxcWdX2UKGgGaAloD0MIKULqdjZAckCUhpRSlGgVS/loFkdAmeAXYHxBmnV9lChoBmgJaA9DCL1vfO3ZInJAlIaUUpRoFUvjaBZHQJngTpPhybR1fZQoaAZoCWgPQwjjbaXXJhlwQJSGlFKUaBVNBAFoFkdAmeDuJUHY6HV9lChoBmgJaA9DCGMpkq/ELHJAlIaUUpRoFUv7aBZHQJnhMB/7SAp1fZQoaAZoCWgPQwhJopdRrKByQJSGlFKUaBVL42gWR0CZ4XTTfBN3dX2UKGgGaAloD0MILEXylQBecECUhpRSlGgVS9xoFkdAmeGrhzeXRnV9lChoBmgJaA9DCHFYGvhRRFRAlIaUUpRoFUugaBZHQJnhz80k4WF1fZQoaAZoCWgPQwj0+SgjLnVTQJSGlFKUaBVLjWgWR0CZ4jvwVj7RdX2UKGgGaAloD0MIvwrw3eZrcECUhpRSlGgVS/1oFkdAmeKDMJQcgnV9lChoBmgJaA9DCGtmLQVklHBAlIaUUpRoFUvjaBZHQJnivHMlkYp1fZQoaAZoCWgPQwjkSGdgJFJyQJSGlFKUaBVL82gWR0CZ4vfUF0PpdX2UKGgGaAloD0MIucK7XMRBckCUhpRSlGgVS8loFkdAmeMrfgrH2nV9lChoBmgJaA9DCOp29pUHo1FAlIaUUpRoFUuFaBZHQJnjnGHYYix1fZQoaAZoCWgPQwh32ERm7vlxQJSGlFKUaBVL2mgWR0CZ49UkOZssdX2UKGgGaAloD0MIKhvWVBazQkCUhpRSlGgVS3toFkdAmePyjHn2ZnV9lChoBmgJaA9DCHk7wmnBX1BAlIaUUpRoFUubaBZHQJnkGtyPuG91fZQoaAZoCWgPQwh9sIwN3URQQJSGlFKUaBVLkmgWR0CZ5D5imVJMdX2UKGgGaAloD0MISgwCK8e0cECUhpRSlGgVS/NoFkdAmeR8Nc4YJnV9lChoBmgJaA9DCL1TAff8ZXJAlIaUUpRoFUvPaBZHQJnk+tmtheB1fZQoaAZoCWgPQwiTisbaH2ByQJSGlFKUaBVL8WgWR0CZ5UO0b961dX2UKGgGaAloD0MIC5jArbuKckCUhpRSlGgVS8FoFkdAmeV3gHeJpHV9lChoBmgJaA9DCL+ByY3iOnJAlIaUUpRoFUvhaBZHQJnlriGWUr11fZQoaAZoCWgPQwhG66hqQoNxQJSGlFKUaBVLx2gWR0CZ5d/9YOlPdX2UKGgGaAloD0MI/wdYqzaycUCUhpRSlGgVS+poFkdAmeZmJBPbf3V9lChoBmgJaA9DCAjnU8cqpG5AlIaUUpRoFUvgaBZHQJnmolme18d1fZQoaAZoCWgPQwi+hXXj3bRvQJSGlFKUaBVLyGgWR0CZ5tJKraM8dX2UKGgGaAloD0MIqHLaU7JNckCUhpRSlGgVS+BoFkdAmecKEvkBCHV9lChoBmgJaA9DCFmis8xiu3NAlIaUUpRoFUvxaBZHQJnnj+Jgssh1fZQoaAZoCWgPQwjz5JoC2QpxQJSGlFKUaBVL7WgWR0CZ59lJpWWAdX2UKGgGaAloD0MIbAVNSyxNc0CUhpRSlGgVS9hoFkdAmegXXqZ+hHV9lChoBmgJaA9DCBdi9UeYa3JAlIaUUpRoFUvjaBZHQJnoUcOskpt1fZQoaAZoCWgPQwge/pqs0T5yQJSGlFKUaBVL5GgWR0CZ6IlxwQ18dX2UKGgGaAloD0MInbryWR6ZcUCUhpRSlGgVS9xoFkdAmekK6FuejHV9lChoBmgJaA9DCOQuwhQliXNAlIaUUpRoFUvNaBZHQJnpQcS5AhV1fZQoaAZoCWgPQwgXvOgrSOxmQJSGlFKUaBVN6ANoFkdAmewJssQNC3V9lChoBmgJaA9DCOS8/48Tu3BAlIaUUpRoFUvdaBZHQJnsRYoy9El1fZQoaAZoCWgPQwj52jNLgpVwQJSGlFKUaBVL6mgWR0CZ7IFrl/6PdX2UKGgGaAloD0MI7pQO1n8TbkCUhpRSlGgVS9VoFkdAmey31BdD6XV9lChoBmgJaA9DCP7WTpQE9XFAlIaUUpRoFUvhaBZHQJntQZflZHN1fZQoaAZoCWgPQwj2JobkZMFtQJSGlFKUaBVL9WgWR0CZ7YkMCtA+dX2UKGgGaAloD0MIZmmn5vJScUCUhpRSlGgVS+9oFkdAme3RybQTmHV9lChoBmgJaA9DCOj6PhzkA3NAlIaUUpRoFU0OAmgWR0CZ7w4REnb7dX2UKGgGaAloD0MIK4iBrv0zb0CUhpRSlGgVTfMBaBZHQJnwEiliz9l1fZQoaAZoCWgPQwji5H6HYmlxQJSGlFKUaBVNTQFoFkdAmfDGITGo73V9lChoBmgJaA9DCGx8JvvnPHBAlIaUUpRoFUvoaBZHQJnxDMkhRqJ1fZQoaAZoCWgPQwi2L6AXblRxQJSGlFKUaBVNSwFoFkdAmfGHFo+OfnV9lChoBmgJaA9DCA5ORL82+mJAlIaUUpRoFU3oA2gWR0CZ9M38XN1RdX2UKGgGaAloD0MIjo8WZ0xeckCUhpRSlGgVS/NoFkdAmfUOOwPiDXV9lChoBmgJaA9DCMrgKHk1knBAlIaUUpRoFUvRaBZHQJn1Qo1DSgJ1fZQoaAZoCWgPQwjK+s3EdGluQJSGlFKUaBVL1WgWR0CZ9cCNS619dX2UKGgGaAloD0MI98391WNhcECUhpRSlGgVS+FoFkdAmfX94zJp4HV9lChoBmgJaA9DCBMM5xpmdG9AlIaUUpRoFU1bAWgWR0CZ9o+c6NlzdX2UKGgGaAloD0MIFD3wMVgVR0CUhpRSlGgVS4BoFkdAmfatZV4oqnV9lChoBmgJaA9DCHY4ukp3VHNAlIaUUpRoFUveaBZHQJn3PWz4UN91fZQoaAZoCWgPQwgZkL3evcBwQJSGlFKUaBVLymgWR0CZ93GQCCBgdX2UKGgGaAloD0MI+WpHcc4rcUCUhpRSlGgVTQ0BaBZHQJn3zIHTqjd1fZQoaAZoCWgPQwhV+DO8Ge9yQJSGlFKUaBVNKgFoFkdAmfgk/0NBnnV9lChoBmgJaA9DCDLKMy+HyXFAlIaUUpRoFU2aA2gWR0CZ+hDSgGr0dX2UKGgGaAloD0MI5ujxe5v8cUCUhpRSlGgVS9loFkdAmfpEWhysCHV9lChoBmgJaA9DCHlXPWBeQXJAlIaUUpRoFUvYaBZHQJn6yy1NQCV1fZQoaAZoCWgPQwhHIcms3t1MQJSGlFKUaBVLlWgWR0CZ+u6InBtUdX2UKGgGaAloD0MI5bM8D+4zcECUhpRSlGgVS+doFkdAmfssWCVbA3V9lChoBmgJaA9DCAvtnGbBr3JAlIaUUpRoFUvdaBZHQJn7bO3UhFF1fZQoaAZoCWgPQwjrAfOQ6TpxQJSGlFKUaBVL0WgWR0CZ+6LKmsNldX2UKGgGaAloD0MIofKv5RXYbECUhpRSlGgVS+BoFkdAmfw2TX8O1HV9lChoBmgJaA9DCNODglK0sG5AlIaUUpRoFUvTaBZHQJn8aB06o2p1fZQoaAZoCWgPQwhvnuqQ27BxQJSGlFKUaBVNlAFoFkdAmf0h9PUKA3V9lChoBmgJaA9DCLqhKTs9aHFAlIaUUpRoFUvFaBZHQJn9U0aZQYV1fZQoaAZoCWgPQwgBFCNLZglxQJSGlFKUaBVNcgFoFkdAmf4jJMg2ZXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12108, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvdGhlYXZlYXNzby9taW5pZm9yZ2UzL2VudnMvaW50cm9STC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL3RoZWF2ZWFzc28vbWluaWZvcmdlMy9lbnZzL2ludHJvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000", "Python": "3.9.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
ppo-lunarlander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09ce291c40dddf46f968e35615f01540d48a7d3c2ce6b08d7171b65dffdac916
|
3 |
+
size 142860
|
ppo-lunarlander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-lunarlander-v2/data
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x1430dbc10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x1430dbca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x1430dbd30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x1430dbdc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x1430dbe50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x1430dbee0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x1430dbf70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x1430e2040>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x1430e20d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x1430e2160>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x1430e21f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x142db3480>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 3100000,
|
46 |
+
"_total_timesteps": 5000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651819004.797436,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": "logs",
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvdGhlYXZlYXNzby9taW5pZm9yZ2UzL2VudnMvaW50cm9STC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL3RoZWF2ZWFzc28vbWluaWZvcmdlMy9lbnZzL2ludHJvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": null,
|
58 |
+
"_last_episode_starts": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_original_obs": null,
|
63 |
+
"_episode_num": 0,
|
64 |
+
"use_sde": false,
|
65 |
+
"sde_sample_freq": -1,
|
66 |
+
"_current_progress_remaining": 0.38007040000000003,
|
67 |
+
"ep_info_buffer": {
|
68 |
+
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWVLhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfSO6Z11fUECUhpRSlIwBbJRLtIwBdJRHQJnWkOEug6F1fZQoaAZoCWgPQwjpRlhUBOdwQJSGlFKUaBVL6mgWR0CZ1tZuAI6bdX2UKGgGaAloD0MIDykGSHTtcUCUhpRSlGgVS8RoFkdAmddUHdGiH3V9lChoBmgJaA9DCE1p/S2BcXJAlIaUUpRoFUvnaBZHQJnXkvwmVqx1fZQoaAZoCWgPQwgb17/rsw9xQJSGlFKUaBVLw2gWR0CZ18opQUHqdX2UKGgGaAloD0MIYDyDhr4RcUCUhpRSlGgVS9xoFkdAmdgIgzP8h3V9lChoBmgJaA9DCHXIzXAD6nBAlIaUUpRoFUvUaBZHQJnYO75Ec811fZQoaAZoCWgPQwi8eD9u//RwQJSGlFKUaBVL52gWR0CZ2LTPjXFtdX2UKGgGaAloD0MID7bY7bNfcECUhpRSlGgVS+VoFkdAmdjuKbayr3V9lChoBmgJaA9DCM/cQ8K3UHBAlIaUUpRoFU0NAWgWR0CZ2T3MINVjdX2UKGgGaAloD0MIFeP8TSjFb0CUhpRSlGgVS91oFkdAmdl5BPbfxnV9lChoBmgJaA9DCP9aXrle629AlIaUUpRoFUvSaBZHQJnZ9YLb5/N1fZQoaAZoCWgPQwha9iSweaxzQJSGlFKUaBVL1WgWR0CZ2jaBZpztdX2UKGgGaAloD0MIEmiwqTPYckCUhpRSlGgVS9NoFkdAmdpzWGyooHV9lChoBmgJaA9DCAh1kUJZLHFAlIaUUpRoFUv6aBZHQJnauMkyDZl1fZQoaAZoCWgPQwitp1ZfnURwQJSGlFKUaBVL4WgWR0CZ20Vfu1F6dX2UKGgGaAloD0MIlKMAUTDfO0CUhpRSlGgVS55oFkdAmdttepn6EnV9lChoBmgJaA9DCIlEoWXdTHBAlIaUUpRoFU0FAWgWR0CZ27iDdxhldX2UKGgGaAloD0MIAP4pVeINc0CUhpRSlGgVTQEBaBZHQJncAljVhCt1fZQoaAZoCWgPQwgIjsu46Z5xQJSGlFKUaBVL6GgWR0CZ3EabF0gbdX2UKGgGaAloD0MIqOSc2MP8b0CUhpRSlGgVS8ZoFkdAmdzD1GsmwHV9lChoBmgJaA9DCP3dO2pMSW9AlIaUUpRoFUvRaBZHQJnc+KFZgXx1fZQoaAZoCWgPQwiaQ1ILJXlxQJSGlFKUaBVL8WgWR0CZ3Tmplz2fdX2UKGgGaAloD0MINGYS9QL+cUCUhpRSlGgVTQwBaBZHQJndkMYuTRp1fZQoaAZoCWgPQwivXG+bKSpxQJSGlFKUaBVLymgWR0CZ3cPnSv1UdX2UKGgGaAloD0MI3KD2Wztqb0CUhpRSlGgVS9toFkdAmd47hm5DqnV9lChoBmgJaA9DCBqLprPTkHFAlIaUUpRoFUvjaBZHQJneebd8ArB1fZQoaAZoCWgPQwh9PzVeuitwQJSGlFKUaBVL3WgWR0CZ3roybhFWdX2UKGgGaAloD0MIkL3e/bGnckCUhpRSlGgVS/hoFkdAmd7987ZFonV9lChoBmgJaA9DCJ/kDptIO3BAlIaUUpRoFUvZaBZHQJnff8l5WzZ1fZQoaAZoCWgPQwj9E1ys6NNwQJSGlFKUaBVL8mgWR0CZ39blRxcWdX2UKGgGaAloD0MIKULqdjZAckCUhpRSlGgVS/loFkdAmeAXYHxBmnV9lChoBmgJaA9DCL1vfO3ZInJAlIaUUpRoFUvjaBZHQJngTpPhybR1fZQoaAZoCWgPQwjjbaXXJhlwQJSGlFKUaBVNBAFoFkdAmeDuJUHY6HV9lChoBmgJaA9DCGMpkq/ELHJAlIaUUpRoFUv7aBZHQJnhMB/7SAp1fZQoaAZoCWgPQwhJopdRrKByQJSGlFKUaBVL42gWR0CZ4XTTfBN3dX2UKGgGaAloD0MILEXylQBecECUhpRSlGgVS9xoFkdAmeGrhzeXRnV9lChoBmgJaA9DCHFYGvhRRFRAlIaUUpRoFUugaBZHQJnhz80k4WF1fZQoaAZoCWgPQwj0+SgjLnVTQJSGlFKUaBVLjWgWR0CZ4jvwVj7RdX2UKGgGaAloD0MIvwrw3eZrcECUhpRSlGgVS/1oFkdAmeKDMJQcgnV9lChoBmgJaA9DCGtmLQVklHBAlIaUUpRoFUvjaBZHQJnivHMlkYp1fZQoaAZoCWgPQwjkSGdgJFJyQJSGlFKUaBVL82gWR0CZ4vfUF0PpdX2UKGgGaAloD0MIucK7XMRBckCUhpRSlGgVS8loFkdAmeMrfgrH2nV9lChoBmgJaA9DCOp29pUHo1FAlIaUUpRoFUuFaBZHQJnjnGHYYix1fZQoaAZoCWgPQwh32ERm7vlxQJSGlFKUaBVL2mgWR0CZ49UkOZssdX2UKGgGaAloD0MIKhvWVBazQkCUhpRSlGgVS3toFkdAmePyjHn2ZnV9lChoBmgJaA9DCHk7wmnBX1BAlIaUUpRoFUubaBZHQJnkGtyPuG91fZQoaAZoCWgPQwh9sIwN3URQQJSGlFKUaBVLkmgWR0CZ5D5imVJMdX2UKGgGaAloD0MISgwCK8e0cECUhpRSlGgVS/NoFkdAmeR8Nc4YJnV9lChoBmgJaA9DCL1TAff8ZXJAlIaUUpRoFUvPaBZHQJnk+tmtheB1fZQoaAZoCWgPQwiTisbaH2ByQJSGlFKUaBVL8WgWR0CZ5UO0b961dX2UKGgGaAloD0MIC5jArbuKckCUhpRSlGgVS8FoFkdAmeV3gHeJpHV9lChoBmgJaA9DCL+ByY3iOnJAlIaUUpRoFUvhaBZHQJnlriGWUr11fZQoaAZoCWgPQwhG66hqQoNxQJSGlFKUaBVLx2gWR0CZ5d/9YOlPdX2UKGgGaAloD0MI/wdYqzaycUCUhpRSlGgVS+poFkdAmeZmJBPbf3V9lChoBmgJaA9DCAjnU8cqpG5AlIaUUpRoFUvgaBZHQJnmolme18d1fZQoaAZoCWgPQwi+hXXj3bRvQJSGlFKUaBVLyGgWR0CZ5tJKraM8dX2UKGgGaAloD0MIqHLaU7JNckCUhpRSlGgVS+BoFkdAmecKEvkBCHV9lChoBmgJaA9DCFmis8xiu3NAlIaUUpRoFUvxaBZHQJnnj+Jgssh1fZQoaAZoCWgPQwjz5JoC2QpxQJSGlFKUaBVL7WgWR0CZ59lJpWWAdX2UKGgGaAloD0MIbAVNSyxNc0CUhpRSlGgVS9hoFkdAmegXXqZ+hHV9lChoBmgJaA9DCBdi9UeYa3JAlIaUUpRoFUvjaBZHQJnoUcOskpt1fZQoaAZoCWgPQwge/pqs0T5yQJSGlFKUaBVL5GgWR0CZ6IlxwQ18dX2UKGgGaAloD0MInbryWR6ZcUCUhpRSlGgVS9xoFkdAmekK6FuejHV9lChoBmgJaA9DCOQuwhQliXNAlIaUUpRoFUvNaBZHQJnpQcS5AhV1fZQoaAZoCWgPQwgXvOgrSOxmQJSGlFKUaBVN6ANoFkdAmewJssQNC3V9lChoBmgJaA9DCOS8/48Tu3BAlIaUUpRoFUvdaBZHQJnsRYoy9El1fZQoaAZoCWgPQwj52jNLgpVwQJSGlFKUaBVL6mgWR0CZ7IFrl/6PdX2UKGgGaAloD0MI7pQO1n8TbkCUhpRSlGgVS9VoFkdAmey31BdD6XV9lChoBmgJaA9DCP7WTpQE9XFAlIaUUpRoFUvhaBZHQJntQZflZHN1fZQoaAZoCWgPQwj2JobkZMFtQJSGlFKUaBVL9WgWR0CZ7YkMCtA+dX2UKGgGaAloD0MIZmmn5vJScUCUhpRSlGgVS+9oFkdAme3RybQTmHV9lChoBmgJaA9DCOj6PhzkA3NAlIaUUpRoFU0OAmgWR0CZ7w4REnb7dX2UKGgGaAloD0MIK4iBrv0zb0CUhpRSlGgVTfMBaBZHQJnwEiliz9l1fZQoaAZoCWgPQwji5H6HYmlxQJSGlFKUaBVNTQFoFkdAmfDGITGo73V9lChoBmgJaA9DCGx8JvvnPHBAlIaUUpRoFUvoaBZHQJnxDMkhRqJ1fZQoaAZoCWgPQwi2L6AXblRxQJSGlFKUaBVNSwFoFkdAmfGHFo+OfnV9lChoBmgJaA9DCA5ORL82+mJAlIaUUpRoFU3oA2gWR0CZ9M38XN1RdX2UKGgGaAloD0MIjo8WZ0xeckCUhpRSlGgVS/NoFkdAmfUOOwPiDXV9lChoBmgJaA9DCMrgKHk1knBAlIaUUpRoFUvRaBZHQJn1Qo1DSgJ1fZQoaAZoCWgPQwjK+s3EdGluQJSGlFKUaBVL1WgWR0CZ9cCNS619dX2UKGgGaAloD0MI98391WNhcECUhpRSlGgVS+FoFkdAmfX94zJp4HV9lChoBmgJaA9DCBMM5xpmdG9AlIaUUpRoFU1bAWgWR0CZ9o+c6NlzdX2UKGgGaAloD0MIFD3wMVgVR0CUhpRSlGgVS4BoFkdAmfatZV4oqnV9lChoBmgJaA9DCHY4ukp3VHNAlIaUUpRoFUveaBZHQJn3PWz4UN91fZQoaAZoCWgPQwgZkL3evcBwQJSGlFKUaBVLymgWR0CZ93GQCCBgdX2UKGgGaAloD0MI+WpHcc4rcUCUhpRSlGgVTQ0BaBZHQJn3zIHTqjd1fZQoaAZoCWgPQwhV+DO8Ge9yQJSGlFKUaBVNKgFoFkdAmfgk/0NBnnV9lChoBmgJaA9DCDLKMy+HyXFAlIaUUpRoFU2aA2gWR0CZ+hDSgGr0dX2UKGgGaAloD0MI5ujxe5v8cUCUhpRSlGgVS9loFkdAmfpEWhysCHV9lChoBmgJaA9DCHlXPWBeQXJAlIaUUpRoFUvYaBZHQJn6yy1NQCV1fZQoaAZoCWgPQwhHIcms3t1MQJSGlFKUaBVLlWgWR0CZ+u6InBtUdX2UKGgGaAloD0MI5bM8D+4zcECUhpRSlGgVS+doFkdAmfssWCVbA3V9lChoBmgJaA9DCAvtnGbBr3JAlIaUUpRoFUvdaBZHQJn7bO3UhFF1fZQoaAZoCWgPQwjrAfOQ6TpxQJSGlFKUaBVL0WgWR0CZ+6LKmsNldX2UKGgGaAloD0MIofKv5RXYbECUhpRSlGgVS+BoFkdAmfw2TX8O1HV9lChoBmgJaA9DCNODglK0sG5AlIaUUpRoFUvTaBZHQJn8aB06o2p1fZQoaAZoCWgPQwhvnuqQ27BxQJSGlFKUaBVNlAFoFkdAmf0h9PUKA3V9lChoBmgJaA9DCLqhKTs9aHFAlIaUUpRoFUvFaBZHQJn9U0aZQYV1fZQoaAZoCWgPQwgBFCNLZglxQJSGlFKUaBVNcgFoFkdAmf4jJMg2ZXVlLg=="
|
70 |
+
},
|
71 |
+
"ep_success_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
74 |
+
},
|
75 |
+
"_n_updates": 12108,
|
76 |
+
"n_steps": 1024,
|
77 |
+
"gamma": 0.999,
|
78 |
+
"gae_lambda": 0.98,
|
79 |
+
"ent_coef": 0.01,
|
80 |
+
"vf_coef": 0.5,
|
81 |
+
"max_grad_norm": 0.5,
|
82 |
+
"batch_size": 64,
|
83 |
+
"n_epochs": 4,
|
84 |
+
"clip_range": {
|
85 |
+
":type:": "<class 'function'>",
|
86 |
+
":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGcvVXNlcnMvdGhlYXZlYXNzby9taW5pZm9yZ2UzL2VudnMvaW50cm9STC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxnL1VzZXJzL3RoZWF2ZWFzc28vbWluaWZvcmdlMy9lbnZzL2ludHJvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
87 |
+
},
|
88 |
+
"clip_range_vf": null,
|
89 |
+
"normalize_advantage": true,
|
90 |
+
"target_kl": null
|
91 |
+
}
|
ppo-lunarlander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60770c67f0a5fc89dcd6811014178cb6da868e2ba3e406417c5c9a8ce1f1ddde
|
3 |
+
size 84637
|
ppo-lunarlander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7b7bbe07fc821283b6889d645fd32d206a8b78a91fea5752e6411bd7186dddd
|
3 |
+
size 43073
|
ppo-lunarlander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-lunarlander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000
|
2 |
+
Python: 3.9.12
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd0004a7580ad694c70ebc23da518815e692dc08e2888d277401a141d8ca0433
|
3 |
+
size 325101
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 283.3052058390757, "std_reward": 18.316520879624303, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T15:43:43.269680"}
|