Transformers
llama
TheBloke commited on
Commit
a9430f0
1 Parent(s): 119077c

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -41
README.md CHANGED
@@ -3,41 +3,59 @@ datasets:
3
  - ehartford/wizard_vicuna_70k_unfiltered
4
  inference: false
5
  license: other
 
 
 
6
  model_type: llama
 
7
  ---
8
 
9
  <!-- header start -->
10
- <div style="width: 100%;">
11
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
12
  </div>
13
  <div style="display: flex; justify-content: space-between; width: 100%;">
14
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
15
- <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
16
  </div>
17
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
18
- <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
19
  </div>
20
  </div>
 
 
21
  <!-- header end -->
22
 
23
- # George Sung's Llama2 7B Chat Uncensored GGML
 
 
24
 
25
- These files are GGML format model files for [George Sung's Llama2 7B Chat Uncensored](https://huggingface.co/georgesung/llama2_7b_chat_uncensored).
26
 
27
- GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
28
- * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with full GPU acceleration out of the box. Especially good for story telling.
29
- * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with GPU acceleration via the c_transformers backend.
30
- * [LM Studio](https://lmstudio.ai/), a fully featured local GUI. Supports full GPU accel on macOS. Also supports Windows, without GPU accel.
31
- * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Requires extra steps to enable GPU accel via llama.cpp backend.
32
- * [ctransformers](https://github.com/marella/ctransformers), a Python library with LangChain support and OpenAI-compatible AI server.
33
- * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with OpenAI-compatible API server.
 
34
 
 
 
 
 
 
 
 
35
 
36
  ## Repositories available
37
 
38
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GPTQ)
39
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML)
40
- * [Original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/georgesung/llama2_7b_chat_uncensored)
 
41
 
42
  ## Prompt template: Human-Response
43
 
@@ -46,20 +64,19 @@ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/gger
46
  {prompt}
47
 
48
  ### RESPONSE:
 
49
  ```
50
 
51
  <!-- compatibility_ggml start -->
52
  ## Compatibility
53
 
54
- ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
55
 
56
- These are guaranteed to be compatible with any UIs, tools and libraries released since late May. They may be phased out soon, as they are largely superseded by the new k-quant methods.
57
 
58
- ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
59
 
60
- These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`.
61
-
62
- They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python, ctransformers, rustformers and most others. For compatibility with other tools and libraries, please check their documentation.
63
 
64
  ## Explanation of the new k-quant methods
65
  <details>
@@ -78,53 +95,63 @@ Refer to the Provided Files table below to see what files use which methods, and
78
  <!-- compatibility_ggml end -->
79
 
80
  ## Provided files
 
81
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
82
  | ---- | ---- | ---- | ---- | ---- | ----- |
83
- | llama2_7b_chat_uncensored.ggmlv3.q2_K.bin | q2_K | 2 | 2.87 GB| 5.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
84
- | llama2_7b_chat_uncensored.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.60 GB| 6.10 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
85
- | llama2_7b_chat_uncensored.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.28 GB| 5.78 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
86
- | llama2_7b_chat_uncensored.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.95 GB| 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
87
- | llama2_7b_chat_uncensored.ggmlv3.q4_0.bin | q4_0 | 4 | 3.79 GB| 6.29 GB | Original quant method, 4-bit. |
88
- | llama2_7b_chat_uncensored.ggmlv3.q4_1.bin | q4_1 | 4 | 4.21 GB| 6.71 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
89
- | llama2_7b_chat_uncensored.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.08 GB| 6.58 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
90
- | llama2_7b_chat_uncensored.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.83 GB| 6.33 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
91
- | llama2_7b_chat_uncensored.ggmlv3.q5_0.bin | q5_0 | 5 | 4.63 GB| 7.13 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
92
- | llama2_7b_chat_uncensored.ggmlv3.q5_1.bin | q5_1 | 5 | 5.06 GB| 7.56 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
93
- | llama2_7b_chat_uncensored.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.78 GB| 7.28 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
94
- | llama2_7b_chat_uncensored.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.65 GB| 7.15 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
95
- | llama2_7b_chat_uncensored.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB| 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
96
- | llama2_7b_chat_uncensored.ggmlv3.q8_0.bin | q8_0 | 8 | 7.16 GB| 9.66 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
97
 
98
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
99
 
100
  ## How to run in `llama.cpp`
101
 
102
- I use the following command line; adjust for your tastes and needs:
 
 
103
 
104
  ```
105
- ./main -t 10 -ngl 32 -m llama2_7b_chat_uncensored.ggmlv3.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
106
  ```
107
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
108
 
109
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
110
 
 
 
111
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
112
 
 
 
113
  ## How to run in `text-generation-webui`
114
 
115
- Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
116
 
117
  <!-- footer start -->
 
118
  ## Discord
119
 
120
  For further support, and discussions on these models and AI in general, join us at:
121
 
122
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
123
 
124
- ## Thanks, and how to contribute.
125
 
126
  Thanks to the [chirper.ai](https://chirper.ai) team!
127
 
 
 
128
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
129
 
130
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -134,13 +161,15 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
134
  * Patreon: https://patreon.com/TheBlokeAI
135
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
136
 
137
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
138
 
139
- **Patreon special mentions**: Slarti, Chadd, John Detwiler, Pieter, zynix, K, Mano Prime, ReadyPlayerEmma, Ai Maven, Leonard Tan, Edmond Seymore, Joseph William Delisle, Luke @flexchar, Fred von Graf, Viktor Bowallius, Rishabh Srivastava, Nikolai Manek, Matthew Berman, Johann-Peter Hartmann, ya boyyy, Greatston Gnanesh, Femi Adebogun, Talal Aujan, Jonathan Leane, terasurfer, David Flickinger, William Sang, Ajan Kanaga, Vadim, Artur Olbinski, Raven Klaugh, Michael Levine, Oscar Rangel, Randy H, Cory Kujawski, RoA, Dave, Alex, Alexandros Triantafyllidis, Fen Risland, Eugene Pentland, vamX, Elle, Nathan LeClaire, Khalefa Al-Ahmad, Rainer Wilmers, subjectnull, Junyu Yang, Daniel P. Andersen, SuperWojo, LangChain4j, Mandus, Kalila, Illia Dulskyi, Trenton Dambrowitz, Asp the Wyvern, Derek Yates, Jeffrey Morgan, Deep Realms, Imad Khwaja, Pyrater, Preetika Verma, biorpg, Gabriel Tamborski, Stephen Murray, Spiking Neurons AB, Iucharbius, Chris Smitley, Willem Michiel, Luke Pendergrass, Sebastain Graf, senxiiz, Will Dee, Space Cruiser, Karl Bernard, Clay Pascal, Lone Striker, transmissions 11, webtim, WelcomeToTheClub, Sam, theTransient, Pierre Kircher, chris gileta, John Villwock, Sean Connelly, Willian Hasse
140
 
141
 
142
  Thank you to all my generous patrons and donaters!
143
 
 
 
144
  <!-- footer end -->
145
 
146
  # Original model card: George Sung's Llama2 7B Chat Uncensored
@@ -150,6 +179,13 @@ Thank you to all my generous patrons and donaters!
150
  Fine-tuned [Llama-2 7B](https://huggingface.co/TheBloke/Llama-2-7B-fp16) with an uncensored/unfiltered Wizard-Vicuna conversation dataset [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered).
151
  Used QLoRA for fine-tuning. Trained for one epoch on a 24GB GPU (NVIDIA A10G) instance, took ~19 hours to train.
152
 
 
 
 
 
 
 
 
153
  # Prompt style
154
  The model was trained with the following prompt style:
155
  ```
@@ -177,3 +213,6 @@ cd llm_qlora
177
  pip install -r requirements.txt
178
  python train.py configs/llama2_7b_chat_uncensored.yaml
179
  ```
 
 
 
 
3
  - ehartford/wizard_vicuna_70k_unfiltered
4
  inference: false
5
  license: other
6
+ model_creator: George Sung
7
+ model_link: https://huggingface.co/georgesung/llama2_7b_chat_uncensored
8
+ model_name: Llama2 7B Chat Uncensored
9
  model_type: llama
10
+ quantized_by: TheBloke
11
  ---
12
 
13
  <!-- header start -->
14
+ <!-- 200823 -->
15
+ <div style="width: auto; margin-left: auto; margin-right: auto">
16
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
17
  </div>
18
  <div style="display: flex; justify-content: space-between; width: 100%;">
19
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
20
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
21
  </div>
22
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
23
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
24
  </div>
25
  </div>
26
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
27
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
28
  <!-- header end -->
29
 
30
+ # Llama2 7B Chat Uncensored - GGML
31
+ - Model creator: [George Sung](https://huggingface.co/georgesung)
32
+ - Original model: [Llama2 7B Chat Uncensored](https://huggingface.co/georgesung/llama2_7b_chat_uncensored)
33
 
34
+ ## Description
35
 
36
+ This repo contains GGML format model files for [George Sung's Llama2 7B Chat Uncensored](https://huggingface.co/georgesung/llama2_7b_chat_uncensored).
37
+
38
+ ### Important note regarding GGML files.
39
+
40
+ The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
41
+
42
+ Please use the GGUF models instead.
43
+ ### About GGML
44
 
45
+ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
46
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
47
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
48
+ * [LM Studio](https://lmstudio.ai/), a fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
49
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with CUDA GPU acceleration via the c_transformers backend.
50
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
51
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
52
 
53
  ## Repositories available
54
 
55
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GPTQ)
56
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGUF)
57
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML)
58
+ * [George Sung's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/georgesung/llama2_7b_chat_uncensored)
59
 
60
  ## Prompt template: Human-Response
61
 
 
64
  {prompt}
65
 
66
  ### RESPONSE:
67
+
68
  ```
69
 
70
  <!-- compatibility_ggml start -->
71
  ## Compatibility
72
 
73
+ These quantised GGML files are compatible with llama.cpp between June 6th (commit `2d43387`) and August 21st 2023.
74
 
75
+ For support with latest llama.cpp, please use GGUF files instead.
76
 
77
+ The final llama.cpp commit with support for GGML was: [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
78
 
79
+ As of August 23rd 2023 they are still compatible with all UIs, libraries and utilities which use GGML. This may change in the future.
 
 
80
 
81
  ## Explanation of the new k-quant methods
82
  <details>
 
95
  <!-- compatibility_ggml end -->
96
 
97
  ## Provided files
98
+
99
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
100
  | ---- | ---- | ---- | ---- | ---- | ----- |
101
+ | [llama2_7b_chat_uncensored.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q2_K.bin) | q2_K | 2 | 2.87 GB| 5.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
102
+ | [llama2_7b_chat_uncensored.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 2.95 GB| 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
103
+ | [llama2_7b_chat_uncensored.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 3.28 GB| 5.78 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
104
+ | [llama2_7b_chat_uncensored.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 3.60 GB| 6.10 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
105
+ | [llama2_7b_chat_uncensored.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q4_0.bin) | q4_0 | 4 | 3.79 GB| 6.29 GB | Original quant method, 4-bit. |
106
+ | [llama2_7b_chat_uncensored.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 3.83 GB| 6.33 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
107
+ | [llama2_7b_chat_uncensored.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 4.08 GB| 6.58 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
108
+ | [llama2_7b_chat_uncensored.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q4_1.bin) | q4_1 | 4 | 4.21 GB| 6.71 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
109
+ | [llama2_7b_chat_uncensored.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q5_0.bin) | q5_0 | 5 | 4.63 GB| 7.13 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
110
+ | [llama2_7b_chat_uncensored.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 4.65 GB| 7.15 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
111
+ | [llama2_7b_chat_uncensored.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 4.78 GB| 7.28 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
112
+ | [llama2_7b_chat_uncensored.ggmlv3.q5_1.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q5_1.bin) | q5_1 | 5 | 5.06 GB| 7.56 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
113
+ | [llama2_7b_chat_uncensored.ggmlv3.q6_K.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q6_K.bin) | q6_K | 6 | 5.53 GB| 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
114
+ | [llama2_7b_chat_uncensored.ggmlv3.q8_0.bin](https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML/blob/main/llama2_7b_chat_uncensored.ggmlv3.q8_0.bin) | q8_0 | 8 | 7.16 GB| 9.66 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
115
 
116
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
117
 
118
  ## How to run in `llama.cpp`
119
 
120
+ Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier.
121
+
122
+ For compatibility with latest llama.cpp, please use GGUF files instead.
123
 
124
  ```
125
+ ./main -t 10 -ngl 32 -m llama2_7b_chat_uncensored.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### HUMAN:\n{prompt}\n\n### RESPONSE:"
126
  ```
127
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
128
 
129
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
130
 
131
+ Change `-c 2048` to the desired sequence length for this model. For example, `-c 4096` for a Llama 2 model. For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.
132
+
133
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
134
 
135
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
136
+
137
  ## How to run in `text-generation-webui`
138
 
139
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
140
 
141
  <!-- footer start -->
142
+ <!-- 200823 -->
143
  ## Discord
144
 
145
  For further support, and discussions on these models and AI in general, join us at:
146
 
147
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
148
 
149
+ ## Thanks, and how to contribute
150
 
151
  Thanks to the [chirper.ai](https://chirper.ai) team!
152
 
153
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
154
+
155
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
156
 
157
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
161
  * Patreon: https://patreon.com/TheBlokeAI
162
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
163
 
164
+ **Special thanks to**: Aemon Algiz.
165
 
166
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
167
 
168
 
169
  Thank you to all my generous patrons and donaters!
170
 
171
+ And thank you again to a16z for their generous grant.
172
+
173
  <!-- footer end -->
174
 
175
  # Original model card: George Sung's Llama2 7B Chat Uncensored
 
179
  Fine-tuned [Llama-2 7B](https://huggingface.co/TheBloke/Llama-2-7B-fp16) with an uncensored/unfiltered Wizard-Vicuna conversation dataset [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered).
180
  Used QLoRA for fine-tuning. Trained for one epoch on a 24GB GPU (NVIDIA A10G) instance, took ~19 hours to train.
181
 
182
+ The version here is the fp16 HuggingFace model.
183
+
184
+ ## GGML & GPTQ versions
185
+ Thanks to [TheBloke](https://huggingface.co/TheBloke), he has created the GGML and GPTQ versions:
186
+ * https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GGML
187
+ * https://huggingface.co/TheBloke/llama2_7b_chat_uncensored-GPTQ
188
+
189
  # Prompt style
190
  The model was trained with the following prompt style:
191
  ```
 
213
  pip install -r requirements.txt
214
  python train.py configs/llama2_7b_chat_uncensored.yaml
215
  ```
216
+
217
+ # Fine-tuning guide
218
+ https://georgesung.github.io/ai/qlora-ift/