Transformers
GGUF
llama
uncensored
TheBloke commited on
Commit
9264cfa
1 Parent(s): 6716d0b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -18
README.md CHANGED
@@ -47,7 +47,7 @@ This repo contains GGUF format model files for [Eric Hartford's Wizardlm 30B Unc
47
  <!-- README_GGUF.md-about-gguf start -->
48
  ### About GGUF
49
 
50
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
51
 
52
  Here is an incomplate list of clients and libraries that are known to support GGUF:
53
 
@@ -86,7 +86,7 @@ Here is an incomplate list of clients and libraries that are known to support GG
86
  <!-- compatibility_gguf start -->
87
  ## Compatibility
88
 
89
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
90
 
91
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
92
 
@@ -150,7 +150,7 @@ Then click Download.
150
  I recommend using the `huggingface-hub` Python library:
151
 
152
  ```shell
153
- pip3 install huggingface-hub>=0.17.1
154
  ```
155
 
156
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
@@ -179,25 +179,25 @@ pip3 install hf_transfer
179
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
180
 
181
  ```shell
182
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/WizardLM-30B-uncensored-GGUF WizardLM-30B-Uncensored.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
183
  ```
184
 
185
- Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
186
  </details>
187
  <!-- README_GGUF.md-how-to-download end -->
188
 
189
  <!-- README_GGUF.md-how-to-run start -->
190
  ## Example `llama.cpp` command
191
 
192
- Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
193
 
194
  ```shell
195
- ./main -ngl 32 -m WizardLM-30B-Uncensored.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}\n### Response:"
196
  ```
197
 
198
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
199
 
200
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
201
 
202
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
203
 
@@ -211,22 +211,24 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
211
 
212
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
213
 
214
- ### How to load this model from Python using ctransformers
215
 
216
  #### First install the package
217
 
218
- ```bash
 
 
219
  # Base ctransformers with no GPU acceleration
220
- pip install ctransformers>=0.2.24
221
  # Or with CUDA GPU acceleration
222
- pip install ctransformers[cuda]>=0.2.24
223
- # Or with ROCm GPU acceleration
224
- CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
225
- # Or with Metal GPU acceleration for macOS systems
226
- CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
227
  ```
228
 
229
- #### Simple example code to load one of these GGUF models
230
 
231
  ```python
232
  from ctransformers import AutoModelForCausalLM
@@ -239,7 +241,7 @@ print(llm("AI is going to"))
239
 
240
  ## How to use with LangChain
241
 
242
- Here's guides on using llama-cpp-python or ctransformers with LangChain:
243
 
244
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
245
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
 
47
  <!-- README_GGUF.md-about-gguf start -->
48
  ### About GGUF
49
 
50
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
51
 
52
  Here is an incomplate list of clients and libraries that are known to support GGUF:
53
 
 
86
  <!-- compatibility_gguf start -->
87
  ## Compatibility
88
 
89
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
90
 
91
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
92
 
 
150
  I recommend using the `huggingface-hub` Python library:
151
 
152
  ```shell
153
+ pip3 install huggingface-hub
154
  ```
155
 
156
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
 
179
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
180
 
181
  ```shell
182
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/WizardLM-30B-uncensored-GGUF WizardLM-30B-Uncensored.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
183
  ```
184
 
185
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
186
  </details>
187
  <!-- README_GGUF.md-how-to-download end -->
188
 
189
  <!-- README_GGUF.md-how-to-run start -->
190
  ## Example `llama.cpp` command
191
 
192
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
193
 
194
  ```shell
195
+ ./main -ngl 32 -m WizardLM-30B-Uncensored.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}\n### Response:"
196
  ```
197
 
198
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
199
 
200
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
201
 
202
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
203
 
 
211
 
212
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
213
 
214
+ ### How to load this model in Python code, using ctransformers
215
 
216
  #### First install the package
217
 
218
+ Run one of the following commands, according to your system:
219
+
220
+ ```shell
221
  # Base ctransformers with no GPU acceleration
222
+ pip install ctransformers
223
  # Or with CUDA GPU acceleration
224
+ pip install ctransformers[cuda]
225
+ # Or with AMD ROCm GPU acceleration (Linux only)
226
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
227
+ # Or with Metal GPU acceleration for macOS systems only
228
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
229
  ```
230
 
231
+ #### Simple ctransformers example code
232
 
233
  ```python
234
  from ctransformers import AutoModelForCausalLM
 
241
 
242
  ## How to use with LangChain
243
 
244
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
245
 
246
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
247
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)