Transformers
GGUF
English
llama
TheBloke commited on
Commit
c677eae
·
1 Parent(s): 3b3bc31

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +415 -0
README.md ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ajibawa-2023/SlimOrca-13B
3
+ datasets:
4
+ - Open-Orca/SlimOrca
5
+ - ajibawa-2023/SlimOrca-ShareGPT
6
+ inference: false
7
+ language:
8
+ - en
9
+ license: cc-by-nc-nd-4.0
10
+ model_creator: Feynman Innovations
11
+ model_name: SlimOrca 13B
12
+ model_type: llama
13
+ prompt_template: 'This is a conversation with your Assistant. It is a computer program
14
+ designed to help you with various tasks such as answering questions, providing recommendations,
15
+ and helping with decision making. You can ask it anything you want and it will do
16
+ its best to give you accurate and relevant information.
17
+
18
+
19
+ Context
20
+
21
+ You are a helpful AI assistant.
22
+
23
+
24
+ USER: {prompt}
25
+
26
+ ASSISTANT:
27
+
28
+ '
29
+ quantized_by: TheBloke
30
+ ---
31
+ <!-- markdownlint-disable MD041 -->
32
+
33
+ <!-- header start -->
34
+ <!-- 200823 -->
35
+ <div style="width: auto; margin-left: auto; margin-right: auto">
36
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
37
+ </div>
38
+ <div style="display: flex; justify-content: space-between; width: 100%;">
39
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
40
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
41
+ </div>
42
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
43
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
44
+ </div>
45
+ </div>
46
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
47
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
48
+ <!-- header end -->
49
+
50
+ # SlimOrca 13B - GGUF
51
+ - Model creator: [Feynman Innovations](https://huggingface.co/ajibawa-2023)
52
+ - Original model: [SlimOrca 13B](https://huggingface.co/ajibawa-2023/SlimOrca-13B)
53
+
54
+ <!-- description start -->
55
+ ## Description
56
+
57
+ This repo contains GGUF format model files for [Feynman Innovations's SlimOrca 13B](https://huggingface.co/ajibawa-2023/SlimOrca-13B).
58
+
59
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
60
+
61
+ <!-- description end -->
62
+ <!-- README_GGUF.md-about-gguf start -->
63
+ ### About GGUF
64
+
65
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
66
+
67
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
68
+
69
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
70
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
71
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
72
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
73
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
74
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
75
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
76
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
77
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
78
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
79
+
80
+ <!-- README_GGUF.md-about-gguf end -->
81
+ <!-- repositories-available start -->
82
+ ## Repositories available
83
+
84
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/SlimOrca-13B-AWQ)
85
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/SlimOrca-13B-GPTQ)
86
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF)
87
+ * [Feynman Innovations's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ajibawa-2023/SlimOrca-13B)
88
+ <!-- repositories-available end -->
89
+
90
+ <!-- prompt-template start -->
91
+ ## Prompt template: Ajibawa-Assistant
92
+
93
+ ```
94
+ This is a conversation with your Assistant. It is a computer program designed to help you with various tasks such as answering questions, providing recommendations, and helping with decision making. You can ask it anything you want and it will do its best to give you accurate and relevant information.
95
+
96
+ Context
97
+ You are a helpful AI assistant.
98
+
99
+ USER: {prompt}
100
+ ASSISTANT:
101
+
102
+ ```
103
+
104
+ <!-- prompt-template end -->
105
+ <!-- licensing start -->
106
+ ## Licensing
107
+
108
+ The creator of the source model has listed its license as `cc-by-nc-nd-4.0`, and this quantization has therefore used that same license.
109
+
110
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
111
+
112
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Feynman Innovations's SlimOrca 13B](https://huggingface.co/ajibawa-2023/SlimOrca-13B).
113
+ <!-- licensing end -->
114
+ <!-- compatibility_gguf start -->
115
+ ## Compatibility
116
+
117
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
118
+
119
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
120
+
121
+ ## Explanation of quantisation methods
122
+
123
+ <details>
124
+ <summary>Click to see details</summary>
125
+
126
+ The new methods available are:
127
+
128
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
129
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
130
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
131
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
132
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
133
+
134
+ Refer to the Provided Files table below to see what files use which methods, and how.
135
+ </details>
136
+ <!-- compatibility_gguf end -->
137
+
138
+ <!-- README_GGUF.md-provided-files start -->
139
+ ## Provided files
140
+
141
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
142
+ | ---- | ---- | ---- | ---- | ---- | ----- |
143
+ | [slimorca-13b.Q2_K.gguf](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF/blob/main/slimorca-13b.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
144
+ | [slimorca-13b.Q3_K_S.gguf](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF/blob/main/slimorca-13b.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
145
+ | [slimorca-13b.Q3_K_M.gguf](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF/blob/main/slimorca-13b.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
146
+ | [slimorca-13b.Q3_K_L.gguf](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF/blob/main/slimorca-13b.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
147
+ | [slimorca-13b.Q4_0.gguf](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF/blob/main/slimorca-13b.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
148
+ | [slimorca-13b.Q4_K_S.gguf](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF/blob/main/slimorca-13b.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
149
+ | [slimorca-13b.Q4_K_M.gguf](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF/blob/main/slimorca-13b.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
150
+ | [slimorca-13b.Q5_0.gguf](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF/blob/main/slimorca-13b.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
151
+ | [slimorca-13b.Q5_K_S.gguf](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF/blob/main/slimorca-13b.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
152
+ | [slimorca-13b.Q5_K_M.gguf](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF/blob/main/slimorca-13b.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
153
+ | [slimorca-13b.Q6_K.gguf](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF/blob/main/slimorca-13b.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
154
+ | [slimorca-13b.Q8_0.gguf](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF/blob/main/slimorca-13b.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
155
+
156
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
157
+
158
+
159
+
160
+ <!-- README_GGUF.md-provided-files end -->
161
+
162
+ <!-- README_GGUF.md-how-to-download start -->
163
+ ## How to download GGUF files
164
+
165
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
166
+
167
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
168
+
169
+ * LM Studio
170
+ * LoLLMS Web UI
171
+ * Faraday.dev
172
+
173
+ ### In `text-generation-webui`
174
+
175
+ Under Download Model, you can enter the model repo: TheBloke/SlimOrca-13B-GGUF and below it, a specific filename to download, such as: slimorca-13b.Q4_K_M.gguf.
176
+
177
+ Then click Download.
178
+
179
+ ### On the command line, including multiple files at once
180
+
181
+ I recommend using the `huggingface-hub` Python library:
182
+
183
+ ```shell
184
+ pip3 install huggingface-hub
185
+ ```
186
+
187
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
188
+
189
+ ```shell
190
+ huggingface-cli download TheBloke/SlimOrca-13B-GGUF slimorca-13b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
191
+ ```
192
+
193
+ <details>
194
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
195
+
196
+ You can also download multiple files at once with a pattern:
197
+
198
+ ```shell
199
+ huggingface-cli download TheBloke/SlimOrca-13B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
200
+ ```
201
+
202
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
203
+
204
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
205
+
206
+ ```shell
207
+ pip3 install hf_transfer
208
+ ```
209
+
210
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
211
+
212
+ ```shell
213
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/SlimOrca-13B-GGUF slimorca-13b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
214
+ ```
215
+
216
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
217
+ </details>
218
+ <!-- README_GGUF.md-how-to-download end -->
219
+
220
+ <!-- README_GGUF.md-how-to-run start -->
221
+ ## Example `llama.cpp` command
222
+
223
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
224
+
225
+ ```shell
226
+ ./main -ngl 35 -m slimorca-13b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "This is a conversation with your Assistant. It is a computer program designed to help you with various tasks such as answering questions, providing recommendations, and helping with decision making. You can ask it anything you want and it will do its best to give you accurate and relevant information.\n\nContext\nYou are a helpful AI assistant.\n\nUSER: {prompt}\nASSISTANT:"
227
+ ```
228
+
229
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
230
+
231
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
232
+
233
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
234
+
235
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
236
+
237
+ ## How to run in `text-generation-webui`
238
+
239
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
240
+
241
+ ## How to run from Python code
242
+
243
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
244
+
245
+ ### How to load this model in Python code, using llama-cpp-python
246
+
247
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
248
+
249
+ #### First install the package
250
+
251
+ Run one of the following commands, according to your system:
252
+
253
+ ```shell
254
+ # Base ctransformers with no GPU acceleration
255
+ pip install llama-cpp-python
256
+ # With NVidia CUDA acceleration
257
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
258
+ # Or with OpenBLAS acceleration
259
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
260
+ # Or with CLBLast acceleration
261
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
262
+ # Or with AMD ROCm GPU acceleration (Linux only)
263
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
264
+ # Or with Metal GPU acceleration for macOS systems only
265
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
266
+
267
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
268
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
269
+ pip install llama-cpp-python
270
+ ```
271
+
272
+ #### Simple llama-cpp-python example code
273
+
274
+ ```python
275
+ from llama_cpp import Llama
276
+
277
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
278
+ llm = Llama(
279
+ model_path="./slimorca-13b.Q4_K_M.gguf", # Download the model file first
280
+ n_ctx=4096, # The max sequence length to use - note that longer sequence lengths require much more resources
281
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
282
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
283
+ )
284
+
285
+ # Simple inference example
286
+ output = llm(
287
+ "This is a conversation with your Assistant. It is a computer program designed to help you with various tasks such as answering questions, providing recommendations, and helping with decision making. You can ask it anything you want and it will do its best to give you accurate and relevant information.\n\nContext\nYou are a helpful AI assistant.\n\nUSER: {prompt}\nASSISTANT:", # Prompt
288
+ max_tokens=512, # Generate up to 512 tokens
289
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
290
+ echo=True # Whether to echo the prompt
291
+ )
292
+
293
+ # Chat Completion API
294
+
295
+ llm = Llama(model_path="./slimorca-13b.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
296
+ llm.create_chat_completion(
297
+ messages = [
298
+ {"role": "system", "content": "You are a story writing assistant."},
299
+ {
300
+ "role": "user",
301
+ "content": "Write a story about llamas."
302
+ }
303
+ ]
304
+ )
305
+ ```
306
+
307
+ ## How to use with LangChain
308
+
309
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
310
+
311
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
312
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
313
+
314
+ <!-- README_GGUF.md-how-to-run end -->
315
+
316
+ <!-- footer start -->
317
+ <!-- 200823 -->
318
+ ## Discord
319
+
320
+ For further support, and discussions on these models and AI in general, join us at:
321
+
322
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
323
+
324
+ ## Thanks, and how to contribute
325
+
326
+ Thanks to the [chirper.ai](https://chirper.ai) team!
327
+
328
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
329
+
330
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
331
+
332
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
333
+
334
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
335
+
336
+ * Patreon: https://patreon.com/TheBlokeAI
337
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
338
+
339
+ **Special thanks to**: Aemon Algiz.
340
+
341
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
342
+
343
+
344
+ Thank you to all my generous patrons and donaters!
345
+
346
+ And thank you again to a16z for their generous grant.
347
+
348
+ <!-- footer end -->
349
+
350
+ <!-- original-model-card start -->
351
+ # Original model card: Feynman Innovations's SlimOrca 13B
352
+
353
+
354
+ **SlimOrca-13B: A General Purpose Intelligent Model**
355
+
356
+
357
+ This Model is trained on refined version of SlimOrca made available by [Open-Orca](https://huggingface.co/Open-Orca) team.
358
+ The idea was to check how this Model will perform in the absence of "system" prompt/instruction.
359
+ This Model is very good in various types of General Purpose content generation such as Q&A (including multiple choice), Articles from Summary, Sentiment Analysis,
360
+ Context & Hypothesis, Reviews, Erotic story generation etc.
361
+ It can also generate Uncensored content. Kindly be careful while generating Uncensored content as you will be responsible for what you
362
+ generate.
363
+
364
+ It is trained on 517981 set of conversations. Each set having 2 conversations. I have shared this [data](https://huggingface.co/datasets/ajibawa-2023/SlimOrca-ShareGPT).
365
+
366
+ All the credit goes to the Open-Orca team for releasing SlimOrca dataset.
367
+
368
+
369
+ **Training:**
370
+ Entire dataset was trained on Azure 4 x A100 80GB. For 3 epoch, training took almost 11 Days. DeepSpeed codebase was used for training purpose.
371
+ Entire data is trained on Llama-2 by Meta.
372
+
373
+ This is a full fine tuned model. Links for quantized models are given below.
374
+
375
+ **GPTQ GGML & AWQ**
376
+
377
+ GPTQ: TBA
378
+
379
+ GGUF: TBA
380
+
381
+ AWQ: TBA
382
+
383
+
384
+
385
+ **Example Prompt:**
386
+ ```
387
+ This is a conversation with your Assistant. It is a computer program designed to help you with various tasks such as answering questions, providing recommendations, and helping with decision making. You can ask it anything you want and it will do its best to give you accurate and relevant information.
388
+
389
+ Context
390
+ You are a helpful AI assistant.
391
+
392
+ USER: <prompt>
393
+ ASSISTANT:
394
+ ```
395
+ You can modify above Prompt as per your requirement. I have used ShareGPT/Vicuna format v1.1 .
396
+
397
+
398
+ I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.
399
+
400
+ Thank you for your love & support.
401
+
402
+
403
+ **Example Output**
404
+
405
+ Example 1
406
+
407
+ ![Example 1](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/hM_EJaSZiMjMQU35EiHGM.png)
408
+
409
+ Example 2
410
+
411
+ ![Example 2](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/riNaxJeTWdCEE4dNP8GWp.png)
412
+
413
+
414
+
415
+ <!-- original-model-card end -->